

Microsoft
3/25/2011

Rev 3.0

Windows Phone 7

Guide for iPhone

Application

Developers

 1

About this Development Guide .. 3

Chapter 1:  Windows Phone 7 Platform introduced to iPhone application
developers ... 4

New Beginning... 4

Developer Tools ... 4

Windows Phone 7 Architecture .. 5

Comparing the WP7 Programming Stack with the iPhone Stack .. 6

Application UI and Device Integration .. 8

Summary ... 9

Related Resources ... 9

Chapter 2: User Interface Guidelines ... 10

A new UI paradigm .. 10

Designing the Application Interface: ... 11

Application User Interface Design ... 12

Comparing WP7 and iPhone Navigation ... 15

WP7 Frame and Page Structure .. 15

Page Structure of WP7 Application ... 16

Summary ... 18

Related Resources ... 18

Chapter 3: Developer and designer tools introduced to iPhone application
developers ... 19

Introduction ... 19

Comparing the iPhone and Windows Phone 7 Tool Set ... 19

Development Lifecycle and Window Phone 7 Developer Tools ... 19

UI Design Tools .. 21

Expression Blend for WP7 ... 24

Editing code ... 25

Building Applications ... 28

Summary ... 32

Chapter 4: C# programming introduced to Objective-C programmers 33

Introduction to Managed Programming ... 33

Comparison between C# Features and Objective-C Classes ... 33

Methods with multiple parameters .. 36

Key class libraries compared ... 44

New features of C# .. 47

Summary ... 50

 2

Chapter 5: Image Format Considerations in migration of iPhone applications to
Windows Phone 7 .. 51

Critical role of Iconography in Windows Phone 7 ... 51

Device resolutions ... 52

Differences in iPhone and WP7 Image Resolutions .. 53

Managing Images for Windows Phone 7 Projects .. 54

Conclusion ... 58

Resources .. 58

Chapter 6: Application Lifecycle Differences Between Windows Phone 7 and the
iPhone .. 59

iPhone and Windows Phone 7 Navigation Models ... 59

Programming for application States and navigation .. 60

Windows Phone 7 LifeCycle .. 60

WP7 LifeCycle and Tombstoning Example .. 63

iOS and Windows Phone 7 State and Event mapping ... 67

Summary ... 67

Resources .. 68

Chapter 7: iPhone to Windows Phone 7 Application Preference Migration 69

Application Preferences .. 69

iPhone Application Preferences .. 69

Windows Phone 7 Application Preferences .. 69

Migrating Application Preferences.. 70

Migration Sample .. 74

Conclusions .. 85

Chapter 8: Introduction to Windows Phone 7 Notifications for iPhone Developers
... 86

What Are Push Notifications? ... 86

Notifications on Windows Phone 7 ... 86

The Architecture of Windows Phone 7 Push Notifications ... 87

Using WP7 Notifications within the Application ... 89

Summary ... 94

Resources .. 94

Next Chapters [list TBD] ... 95

Coming soon .. 95

 3

About this Development Guide

If you have been developing iPhone applications and are interested in
building your applications for Windows Phone 7, this guide is for you.

The guide will cover what you need to know to add Windows Phone 7
development to your skill set, while leveraging what you have already
learned building iPhone applications.

 4

Chapter 1:  Windows Phone 7 Platform
introduced to iPhone application developers

New Beginning

On October 11th Microsoft announced the release of Windows Phone 7 on 10 devices from a variety of
manufacturers all over the world. Almost 2000 applications are already available on the Windows Phone
7 marketplace.

For Windows Phone 7, Microsoft went back to the drawing board to figure out what phone users really
want, and built a phone from the ground up. The OS, the user experience and the application
development platform have all been engineered with users in mind. The revenue opportunities in the
Windows Phone marketplace, accompanied by a great set of development tools, make WP7 a very
attractive destination for developers to build applications and games.

Developer Tools

In early September, Microsoft released a set of tools for Windows Phone 7. This toolset is free and can
be downloaded from here. The toolset includes:

 An IDE (for developers) : Visual Studio Express for Windows Phone,

 A User Interface design tool (for designers): Express Blend for Windows Phone,

 Frameworks: Silverlight for Windows Phone and XNA Game Studio for Windows Phone

 And a Windows Phone 7 emulator to test and debug applications.

The tools are designed to let you develop consumer applications, business applications or games.

http://create.msdn.com/en-us/home/getting_started

 5

Windows Phone 7 Architecture

Windows Phone 7 utilizes a layered architecture as shown below. In contrast to the iPhone OS, WP7 will
run on multiple phones. To provide a consistent user experience and features that developers can rely
on, it defines a minimum set of hardware specifications that all phones must meet.

They include an ARM7 CPU, a DirectX capable GPU, a camera, and a multi-touch capacitive display.
Standard sensors include: an A-GPS, an accelerometer, a compass, proximity and light sensors. There are
three standard physical buttons on the phone – back, start and search. As we will see in a subsequent
chapter, these buttons provide an easy and natural navigation model for the user.

In WP7, Microsoft provides most of the device driver code. The device manufacturer has to write very
little code specific to their device. This is expected to improve the consistency and quality across various
devices. WP7 takes advantage of hardware acceleration through encapsulation layers such as DirectX or
XNA.

WP7 applications use managed programming and run within sandboxed environments. Watch this MIX
’10 presentation by Istvan Cseri , a Windows Phone 7 architect to get more details on the WP7
architecture.

http://live.visitmix.com/MIX10/Sessions/CL18
http://live.visitmix.com/MIX10/Sessions/CL18

 6

Comparing the WP7 Programming Stack with the iPhone Stack

The App Model shown above provides services for managing the application lifecycle such as
installation, and update. The UI model helps manage application user interface. Applications are built
using various WP7 frameworks.

The following table gives an overview of the Windows Phone 7 frameworks that provide features
comparable to the iPhone programming layers.

iPhone
Frameworks

Functionality Windows Phone 7
Frameworks:

Cocoa Touch Application UI, Device
integration (sensors,
camera)

WP7 Phone Framework,
Silverlight controls

Media Layer Graphics, Animation,
Media

XNA for games or Silverlight
media and graphics for others

Core Services layer Base services,
Networking, Text, XML,
storage

Common Base Library

Core OS layer + iOS Window Phone 7 OS

iOS and WP7 Stacks side by side

The following table provides a detailed look into the framework layers shown above. The left hand side
shows the iPhone stack with the corresponding framework from Windows Phone 7 on the right. These
frameworks can be grouped in three large buckets, namely, Application UI and Phone integration, Base
services, with the OS layer underneath.

iPhone Frameworks Windows Phone 7 Frameworks C
o

co
a To

u
ch

Multi-tasking

O
b

jective
-C

C
o

r V
B

.N
ET

A
p

p
licatio

n
 U

I an
d

P
h

o
n

e in
tegratio

n

iAds

Application UI Application UI

Device integration Device integration

Browser Control Browser Control

Notifications Notifications

Peer to Peer
Gaming

Silve
rligh

t

Gamer
Services

X
N

A

Tw
o

 A
p

p
licatio

n

Typ
es

Controls & Gestures Controls &
Gestures

 M
ed

ia

Media Media Media

Animations Animations Animations

 7

Graphics Graphics Graphics C
o

re Services

File System Isolated Storage Content

SQLLite
B

ase C
lass Lib

rary

Location Location

XML XML, LINQ

Networking Networking, Windows Communication
Foundation

Foundation CLR Base Classes

Core OS Windows Phone 7 OS

Managed Code only

On the iPhone, you have been using Objective-C. WP7 only supports “managed code” applications using
C# or VB.net; there is no native access available to the system or the phone hardware. Execution of
such code is managed by the .NET Common Language Runtime (CLR). One of the benefits is that CLR
provides garbage collection - there is no memory management to worry about or pointers to take care
of. The WP7 application stack is built on the .NET compact framework 3.7. The .NET compact
framework is optimized for resource constrained devices and is designed to be portable across various
hardware platforms.

Base Services

WP7 Base Class Library classes roughly correspond to those provided in the Foundation framework in
the iOS Core Services Layer. They include base classes, collections, threading, text processing and IO.
The WP7 Base Class Library layer also includes networking stacks, such as HTTP and the Windows
Communication Foundation (WCF). WCF provides an easy interface with XML and SOAP services across
the web, with features supporting XML data transfer, serialization/deserialization and XML parsing.
While WP7 does not have a local database such as SQLLite, developers can write SQL-like queries in C#
using Language Integrated Query (LINQ) to query XML data, stored in isolated storage (see below), or in
remote databases such as SQL Azure.

http://blogs.msdn.com/b/brada/archive/2004/01/09/48925.aspx

 8

Application UI and Device Integration

WP7 – Two Options for Applications UI

If you are using the iOS Media layer frameworks, you have two stacks to choose from in WP7, namely,
Silverlight and XNA. While you can use either, generally, it is recommended that you use Silverlight for
consumer or business applications and XNA for games, although you can certainly also develop great
games using Silverlight animation.

Two Types of Applications
iPhone
Applications: UI
using views with
navigation between
them

WP7 Applications

Silverlight apps with
pages connected by flows

iPhone Games:

2D or 3D games
built with Quartz or
OpenGL ES

XNA games with 2D / 3D
graphics and Xbox
connectivity

XNA for Games

XNA framework, originally developed for XBOX, provides hardware accelerated 2D and 3D rendering and
bitmap graphics. XNA also provides gamer services such as authentication and connectivity with XBOX
Live, as well as profiles and leaderboards. For a high performance game, XNA is the right option.

Silverlight Controls and Media

If you have been using Cocoa Touch for controls and multi-touch, you will find a large set of Silverlight UI
controls specifically designed for the phone and supporting multi-touch. Silverlight uses a declarative
language called Extensible Application Markup Language (XAML) to specify user interfaces. Developers
can use separate code-behind files, written in C# or VB.NET, to respond to events or manipulate the
controls.

Silverlight provides high performance audio and video with variety of CODECs. It supports both vector
and bitmap graphics with hardware acceleration. As opposed to a file system, Silverlight provides
sandboxed storage, called isolated Storage, to store the application-specific data. With the isolation of
storage, one application cannot affect other applications that are running on the phone.

 9

Windows Phone Frameworks

If you need to use HTML in your application, you can use the IE-based browser control in your
application for HTML UI. Windows Phone framework layer also provides interfaces to various sensors,
such as the accelerometer or the camera. Similar to Apple’s notification service, Microsoft provides a
push notification service, called Microsoft Push Notification Service. In iOS 4.0, Apple introduced multi-
tasking and iAds for advertisement support in the application. While multitasking is not available on
Windows Phone 7, Microsoft has recently released Microsoft Advertising SDK for Windows Phone 7.

Summary

In this chapter we looked the Windows Phone 7 architecture and the two programming stacks. Now that
you have a high-level idea of how the WP7 programming stack maps to the iPhone stack, we are now
going to go one level deeper. In the next chapter, we will look at the user interface guidelines of WP7
applications.

Related Resources

To go deeper into the topic discussed, check:

1. App Hub – Central place for Windows Phone 7 development. Getting started, download tools
and read all about Windows Phone 7 development

2. MIX ’10 presentation on Windows Phone 7 Architecture by Istvan Cseri

Other Resources you may find useful:

1. Overview of the Windows Phone 7 Application Platform
2. Windows Phone 7 team blog.
3. Windows Phone 7 Programming: Programming guide and reference documents.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=b0f00afc-9709-4cc2-ba2c-57728db6cbd6
http://create.msdn.com/en-us/home/getting_started
http://live.visitmix.com/MIX10/Sessions/CL18
http://live.visitmix.com/MIX10/Sessions/CL13
http://www.microsoft.com/windowsphone/en-us/default.aspx
http://msdn.microsoft.com/en-us/library/ff402535(v=VS.92).aspx

 10

Chapter 2: User Interface Guidelines

A new UI paradigm

Microsoft’s Windows Phone 7 uses a novel user interface called Metro. It sets itself apart with its clean
and simple design and emphasis on color and typography.

In contrast with the application-focused design of the iPhone, WP7 uses an
information-centric design. Instead of an array of application icons, the start
screen of a Windows Phone consists of dynamic tiles that display critical
information at a glance to the user. The tiles themselves are dynamic, in that
they continuously portray the up-to-date status of the application. For
example, they can show you the next appointment on your calendar, or the
number of new emails waiting for your attention. Users can personalize their
phone by pinning the tiles that they care most about.

WP7 introduces a new paradigm called “hubs”. Hubs bring related information
together. There are six hubs, namely, People, Pictures, Music + Videos,
Marketplace, Office, and Games. The People hub, in the instance shown below,
aggregates your address book contacts and Facebook friends.

http://www.microsoft.com/windowsphone/en-us/features/default.aspx#start-screen-live-tiles
http://www.microsoft.com/windowsphone/en-us/features/default.aspx#people-hub

 11

Designing the Application Interface:

While the design of the Windows Phone 7 user interface is different from that of the iPhone, the core
design principles are very similar. Like the iPhone, WP7 developers have to keep in mind the compact
screen, lower CPU and limited memory while designing the applications. Users use one application at a
time, with just one screen visible.

Similar Application Design Goals

Usability and UI design are not afterthoughts, but are the primary goals behind applications on both the
iPhone and WP7. Applications need to be simple and focus on key scenarios that most users care about.

Visual Elements and Direct Manipulation

Like the iPhone, visual elements and direct manipulation of objects by touch are the key characteristics
of the WP7 application. WP7 provides a complete set of UI controls designed for the phone. It utilizes
the same set of core multi-touch gestures as the iPhone with similar semantics – these include tap,
double tap, pan, flick, touch and hold, and pinch and stretch.

 12

Implications of the similarities for the developers:

For the most part, your application planning process will be similar on both platforms. While designing
your WP7 application, you will focus on the same information that is critical to the user. Your key design
principles from the iPhone application will get carried over: metaphors, direct manipulation with multi-
touch, the need for immediate feedback and aesthetic appeal, will still remain the same.

Application User Interface Design

While there are similarities in the design principles of the applications on both platforms, pay close
attention to the user interface of the application for the WP7. It is best to take advantage of the unique
features and strengths of WP7 platform.

For the interface to provide a consistent experience across applications, applications on WP7 need to
adopt the new Metro design guidelines.

Controls and the Application Interface

The WP7 development tools and SDK include a rich collection of Silverlight controls designed specifically
for usability and aesthetics. While you can create your own controls, it is best to use the standard
controls where possible. These controls respond to theme changes and provide the consistent user
interface.

http://go.microsoft.com/fwlink/?LinkID=183218
http://create.msdn.com/en-us/home/getting_started

 13

The following table shows the mapping between WP7 Silverlight controls and corresponding iPhone
controls.

iPhone control: WP7 control: Notes:

Text field Text box

Label Textblock

Search bar Textbox + button

Rounded Rectangle Button Button

Segmented control Radio Button

Activity indicator Progress indicator

Slider Slider

Progress View Progress bar

- Multi-scale image Image with zoom capability

- Panorama Panorama to display related
content that spans display

- Pivot To provide different views on the
data

- Grid To arrange other controls in a
tabular form

- Ink presenter Surface for inking

Page indicator -

UISwitch ToggleSwitch control Available on Codeplex*

Date and time pickers Datepicker / Timepicker Available on Codeplex *

Picker - Use Silverlight WP7 template

* ToggleSwith and Datepicker/Timepicker control are part of the Silverlight for Windows Phone Toolkit
available on Codeplex: http://silverlight.codeplex.com/releases/view/55034

As you can see above, WP7 offers controls that correspond to almost all of the iPhone controls. While
the look and feel is different, they provide similar functionality.

New Controls

Windows Phone 7 introduces a few novel controls that have no counterpart on the iPhone. A multi-scale
image, with image data at various resolutions, is appropriate for allowing the user when zooming into a
photo. Panorama control is a multi-screen page and allows a page to span horizontally beyond the width
of the phone. The people hub, shown above, is a great example of this control. It allows a large amount
of related information to be presented. Pivot control, another novel control shown below, is useful to
manage views and display information that is logically divided in sections.

http://silverlight.codeplex.com/releases/view/55034

 14

 Notifications

Both iPhone and WP7 have notification services, but notifications play a key role in WP7. The tile
notifications are what make the tiles come alive. They are used to display non-critical information
without disrupting what the user is doing. If you are using an application badge on the icon in an iPhone,
you can use a tile notification as a replacement. However, tiles have the ability to provide far more
information, such as photos (see above).

The notification service can also display toast notifications that provide time sensitive information such
as an SMS. The toast notifications are shown for about 10 seconds, but the user may choose to ignore
them. These are different from the iPhone alerts, which a user must respond to.

iPhone Functionality Windows Phone 7

Icon badges Non-critical information that
user may not respond to

Tile notifications

- Time sensitive data that user
may not respond to

Toast Notifications

Alerts Modal alerts that user must
respond to

Application notifications

 15

Tool and Tab bar vs. Application bar

As opposed to separate tool bar and tab bar, WP7 only sports an application bar. The application bar can
include up to 4 of the most common views or application tasks. You can also use application bar menus
for additional context-sensitive tasks. If you are using action sheets in your iPhone application,
application bar menus will provide you with similar functionality.

iPhone Functionality Windows Phone 7

Status bar Information about device Status bar

Navigation bar Navigation, Title, Buttons for
views or actions

Back button for back navigation

Page title

View and actions on
Application bar

Tab bar Alternate views Application bar

Tool bar Actions in the current
context

Application bar

Action sheets Context sensitive menus Application bar menus

Comparing WP7 and iPhone Navigation

WP7 application is a collection of multiple pages. Like on the iPhone, the user navigates through
different pages using widgets such as buttons and links. However, the two platforms differ in their back
navigation.

On the iPhone, developers need to implement the back functionality using the navigation controls on
the navigation bar. On WP7, the hardware back button allows the user to navigate back between pages
within an application, or across applications. It behaves much like the Back button in a browser. The
Back button also closes menus and dialogs. As a developer, you should consider what the Back button
means to your user and plan to override it appropriately. For example, you may decide to pause a game
using the Back button.

The other two hardware buttons on the WP7 phone, namely, Search and Home, have fixed behavior.

WP7 Frame and Page Structure

Each WP7 application has a single frame, and it includes areas for:

1. a page where application content is rendered. This is the content where widgets or graphics are
rendered.

2. a reserved space for the system tray and application bar. It also exposes certain properties such
as orientation to the application.

 16

System Tray and Application Bar

On WP7, the system tray includes indicators for various system-level status information. The application
bar includes the area for the most common application menus, which may include various data views or
tasks.

Page Structure of WP7 Application

The following diagram shows the structure of a typical WP7 data-bound application, which resembles a
navigation-based iPhone application.

 17

When the user first starts the application, he or she would be presented with a splash screen, designed
to welcome the user, as well as to create the perception of fast response. Splash screens are usually an
image file, of the size of the display.

Usually the application starts with the home page; the main navigation page, with links for search, and
other page widgets. Consider an application that shows information about the baseball teams and their
players. The primary content page, marked “widgets” page above, will have the content of interest; e.g.,
a list of all baseball teams. In many cases, the home page will also be the primary content page.

The user can click on one of the team links to visit the team details page (“widget details page”) which
can provide multiple views. The page may employ a pivot control or panorama to display different views
such as the team summary and the list of all players (“list of gadgets”) from that team. Selecting one of
the baseball players will take the user to the page with player statistics (“Gadget Details page”). Such a
page may use controls such as textblocks, multi-scale images, or other multimedia using a
MediaElement control.

Users may also use the search widget to search and directly access the team page (“widget details”) or
the player page (“gadget details”)

Application Templates

As you know, XCode provides different templates for various iPhone applications. The following table
shows the mapping between XCode application types and Visual Studio application templates.

XCode Template Functionality Visual Studio Template

Navigation-based For information drilldown apps Databound application

View based For utility apps e.g. bubble level Windows Phone application

 18

OpenGL-ES based For Games WP7 Game (XNA) application

Window-based Flexible template to design any
application

Windows Phone application

You can choose the Windows Phone application template to either create an application with
functionality similar to the view-based or the window-based iPhone application type. Lastly, the XNA
based games application template will give you functionality similar to the OpenGL-ES application.

Summary

In this chapter, we looked at the WP7 user interface guidelines. We showed the parallels between the
application design goals of the iPhone platform and the WP7 platform. When you plan your WP7
application, you should be able to leverage your existing work on iPhone applications.

Revisit the application interface design to make sure you are taking advantage of the WP7 metro design
that uses Windows Phone 7 interface guidelines. You will find that the WP7 tools offer a large library of
controls and gestures that have close counterparts on the iPhone. Investigate the use of innovative
controls like panorama, and explore the use of live tiles to build an engaging WP7 experience.

Related Resources

To go deeper into the topic discussed, check:

1. Windows Phone 7 User Interface Guidelines
2. Windows Phone 7 Developer Tools
3. Silverlight for Windows Phone toolkit on CodePlex
4. Design resources for Windows Phone

Other Resources you may find useful:

1. Application Page Model for Windows Phone 7
2. Frame and Page Navigation Overview for Windows Phone

http://go.microsoft.com/fwlink/?LinkID=183218
http://msdn.microsoft.com/en-us/library/ff402523(v=VS.92).aspx
http://silverlight.codeplex.com/releases/view/52297
http://msdn.microsoft.com/en-us/library/ff637515(VS.92).aspx
http://msdn.microsoft.com/en-us/library/gg278407(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff402536(v=VS.92).aspx

 19

Chapter 3: Developer and designer tools
introduced to iPhone application developers

Introduction

With the release of Windows Phone 7 developer tools, Microsoft brings the user-friendly, high
productivity Visual Studio Development environment to Windows Phone 7. Developers who have used
Visual Studio will find a familiar environment. Even iPhone application developers familiar with XCode
will find it easy to migrate to WP7 developer tools and become productive quickly.

Comparing the iPhone and Windows Phone 7 Tool Set

Visual Studio 2010 Express for Windows Phone is a full featured IDE specifically created for designing,
developing and debugging Windows Phone 7 applications. This IDE, along with other tools, namely,
Expression Blend, XNA Game Studio, and Windows Phone Emulator cover the entire cycle of Windows
Phone application development.

WP7 developer tools cover the full functionality that is provided by the iPhone application developer
tools. The following table gives an overview of the functionality of each of these tools and how they
correspond to iPhone development equivalents.

As you plan to develop applications for WP7, your iPhone team structure and overall development
process can remain the same. The entire team of designers, developers and testers, familiar with iPhone
development tools, will find it easy to migrate to the WP7 toolset.

Development Lifecycle and Window Phone 7 Developer Tools

Functionality Audience iPhone
Development tools

WP7 Development tools

Primary UI design –
colors, gradients,
animation

UI Designer 3rd party tools. Expression Blend for Windows Phone

UI design UI Designer /
Programmer

Interface Builder Visual Studio 2010 Express for
Windows Phone and Expression
Blend for Windows Phone

App development
(Coding)

Programmer XCode Visual Studio 2010 Express for
Windows Phone

Game development
(Coding)

Programmer XCode XNA Game Studio

Testing / Emulation Tester iPhone simulator Windows Phone Emulator (included
in Visual Studio 2010 Express)

 20

Windows Phone 7 development tools facilitate a close collaboration between designers and developers
through the use of Expression Blend and Visual Studio. These two tools share the same file structure as
well as actual source files. Expression Blend uses XAML for UI design, a declarative XML based language,
which is also consumed by Visual Studio. This allows the designer and the developer to work seamlessly
together while it provides clear separation of responsibilities between the two.

Project Management

Like XCode, Visual Studio Express for WP7 is a full featured IDE. It allows developers to manage the
entire structure of the development project; the source files as well as the various resource files. Visual
Studio allows you to configure the application codebase, called a Visual Studio Solution, as a collection
of projects, i.e. as a separate functional unit. This makes it easy to manage source files, to share code as
well as to manage the work among team members. Visual Studio integrates a compiler and a debugger,
both of which can be invoked either interactively or via the command line.

Let us create a sample application. Start Visual Studio Express for WP7 and click File, then New Project.
In the New Project dialog select Windows Phone Application. Type “ShoppingList” for the name of the
project and click OK. Visual Studio will create a new project for you as shown below. The Solution
Explorer window shows the solution we just created. This solution has only one project, also named
ShoppingList. The project contains the sources, resources and properties.

Designer

ProgrammerTester

 21

Unlike XCode, Visual Studio Express for WP7 does not provide integration with source control. You can
use Visual Studio Professional edition which integrates various source control systems, such as
Subversion, that iPhone application developers are familiar with. Alternatively, you can use the Visual
Studio Team System, an edition designed particularly for greater communication and collaboration
among software development teams, for developing your WP7 application.

UI Design Tools

WP7 developer tools include two UI design tools, namely, Expression Blend and Visual Studio UI
designer. WP7 uses SilverLight, with its XML markup language, for the UI specification.

Visual Studio UI design tool is comparable to Interface Builder. iPhone application developers who know
Interface Builder will find it easy to use this tool. The main page for our ShoppingList solution,
MainPage.xaml, is already opened in the VS UI designer tool for editing (shown above).

Let us change the title of the application, as well as the title of the current page. Right click on the title,
“MY APPLICATION” and select Properties. In the properties window, select Text and type “SHOPPING
LIST.” Similarly, change the title of the page by typing “my list” in the Text property of the title.

Open the Toolbox, drag a TextBlock and drop it on the page. Position it so that it is at the top left. Right
click on the TextBlock and update its Text property to “Item:”

 22

Drag a TextBox from the toolbox and place it underneath the above the textblock. Update its Text
property to wipe it clean. Right underneath Properties, click on “TextBox1”, and type “txtItem” to
change the ID of the textbox to txtItem. Resize the textbox by dragging its right bottom corner so that
its width is 300.

Similarly, drag a button and drop it to the right of the TextBox. Change its Content property to “Add”,
and its ID to “btnAdd”. Resize the button so that its width is 140. And finally, drag another TextBox and
place it underneath the txtItem textbox. Resize it so that it covers the rest of the phone screen. Update
its ID to “txtList” Update its Text property to “Nothing here yet!” Your application should look
something like this:

 23

Click F5, or Debug and Start Debugging, to compile the application and launch it. This will start the WP7
emulator, deploy the ShoppingList application and run it. You can click on Add, but nothing will happen
as we have not written any logic yet.

 24

Developers can use context menus to add event handlers or set control properties. Its integration with
Visual Studio allows for direct manipulation of controls and makes it easy to add logic to UI controls.

Expression Blend for WP7

Expression Blend for WP7 is a full featured visual UI design tool created for designers. There is no exact
counterpart to this in the iPhone development toolset. Similar to VS Design tool, Expression Blend also
allows drag and drop to design the UI. The tool, shown below, allows pixel accurate layout of controls.
They can easily create and use color palettes and gradients, as well as special effects such as reflections
and shadows. The tool can import Photoshop files, to make it easy to bring your iPhone application
resources to your Windows Phone application. Designers can also use the tool to define application
behavior, as well as certain animations, without any programming.

While designers use Expression Blend, and programmers use the Visual Studio Design tool to hook up
their application logic to the UI design, the VS UI design tool can also be used for the UI design, as we
saw earlier. Both tools include the same control set, that provides accurate fidelity to their run time
visual representation, making it easy to visualize the application. The two design tools use the same
project structure and share source files. Both tools consume/produce XAML, the Silverlight XML
declarative markup language, for the interface design. This makes it very convenient for a designer to
work on the design using Expression Blend while the developer uses Visual Studio to design the logic
behind the application. It creates a smooth design and development workflow.

 25

Editing code

Visual Studio includes a simple to use, full featured, yet configurable, source editor. It provides various
features that will be familiar to XCode users. These include flexible search, rich editing, code formatting,
and the ability to outline/hide code.

Let us add some logic to our application. Stop the running application by clicking Debug, followed by
Stop Debugging. Double click the “Add” button which will open MainPage.xaml.cs with a method
btnAdd_click in the MainPage class.

Edit the newly added method to add logic to add items to the shopping list. Type:

 string tStr = txtItem.Text;

As soon as you type “t” for txtItem, VS will bring up the auto-completion dialog as shown below. The
Visual Studio counterpart for XCode auto-completion is called IntelliSense.

 26

Also type:

 if (!String.IsNullOrEmpty(tStr))

As soon as you type, “String.” VS will pop up the auto-completion dialog. Typing “Is” will take you to the
class methods of the String class.

 VS IntelliSense is richly featured. As opposed to relying on the history alone, it disambiguates using the
code context and .NET reflection, for intelligent auto-completion. It can suggest or even complete
variable names, parameters, as well as class and method names. It even generates appropriate code
where needed, as shown below using an unrelated code fragment:

To complete the event hookup, it will also generate an empty stub for the event handler, i.e., the
button1_click method.

Visual Studio provides another very useful feature called Code Snippets, which is a counterpart to text
macros in XCode. It allows you to insert code fragments in the active file with a few mouse clicks. Visual

 27

Studio ships with a large number of snippets and developers can create their own library of snippets.
They can also be indexed and searched using user defined terms.

Type ctrl+k ctrl+x to bring up the Insert Snippet prompt. Select Visual C#, followed by “i” to select a
code snippet for “if statement”, which will insert an if statement in the code.

The inserted snippet identifies the parts the user needs to complete:

Type the remaining code, so that the body of the method is as follows:

 string tStr = txtItem.Text;

 if (!String.IsNullOrEmpty(tStr))

 {

 if (txtList.Text == "Nothing here yet")

 {

 txtList.Text = "";

 }

 txtList.Text += txtItem.Text + "\n";

 txtItem.Text = "";

 }

Visual Studio supports various refactoring mechanisms. Select any piece of code and right click to access
the refactoring menu.

The Visual Studio editor is highly customizable. Developers can easily define different keyboard
shortcuts or create their own macros. Macros help you automate repetitive actions by combining a
series of commands and instructions together, making it easy to invoke them as one command. iPhone

 28

application developers can easily customize the editor to use any shortcuts and keyboard combinations
that they are familiar with. Instead of spawning a separate window for each file, as in XCode, the default
view in VS uses tabbed windows. Developers can change this behavior to suit their need. They can
change the way in which various windows are docked within the Visual Studio Shell.

Building Applications

Similar to XCode, Visual Studio Express for WP7 allows you to build the Visual Studio solution on
demand. Further, each project that is part of the solution can be built separately.

Visual Studio uses an XML based, declarative build system called MSBuild which can be compared with
Ant/Nant. Builds can be invoked interactively or via a command line for batch processing. This system is
flexible and allows you to build a specific target either as a debug build or as a release build.

Emulator

WP7 developer tools include an emulator that can be used effectively for testing applications. It
provides features that are comparable to the iPhone simulator included in the iPhone developer tools.

The WP7 emulator provides a virtualized environment in which you can deploy, debug and test
applications. The Windows Phone Emulator is designed to provide comparable performance to an
actual device and meets the peripheral specifications required for application development. It can be
invoked from Visual Studio to load an application package [.xap] within the emulator.

Debugging

Visual Studio Express Phone 7 includes a very powerful symbolic debugger that can be used with the
WP7 emulator or with a remote device. Once the application breaks into the debugger, the developer
can view the variables in the application and control the execution.

Let us look at the debugger in action. Press F5 to launch the application again. Type “napkins” in the
textbox and click Add.

 29

“Napkins” is added at the end of “Nothing here yet!” - not something we expected. In Visual Studio,
click in the light blue area to the left of the “string tStr = txtItem.Text;” line in the code window. This will
insert a breakpoint at that line.

Launch the application again using F5. When the application breaks into the debugger, hover over
txtItem in the code and click “+” in the popup to view the variable txtItem, as shown below. The
developer can view the variable, its type, its fields and properties. The picture below shows how you
can walk up and down the type hierarchy to inspect the objects.

 30

You can set a “watch” on certain variables to inspect them continuously. Right click txtList, followed by
Add Watch. The watch window will show the variable txtList. Expand txtList by clicking on “+”.

Step through the code using F10 to see that control does not enter the if statement.

 if (txtList.Text == "Nothing here yet")

 {

 txtList.Text = "";

 }

Observe in the watch window that the value of txtList.Text is “Nothing here yet!”, whereas it is getting
compared with “Nothing here yet” (with no exclamation point.) Therein is our bug! Change that
statement to add the exclamation point, as follows:

 if (txtList.Text == "Nothing here yet!")

 31

While in the debugger, the developer can use the VS ‘immediate mode’ where one can write managed
code instructions to modify or view the variables or execute some code to help with debugging.

Update the code and relaunch the application. Test it by adding couple of items to the shopping list.

Overall, you will find that, with the power of the managed programming environment, debugging a WP7
application is very easy. Unlike an XCode application, where you have access to assembly instructions,
memory dumps and various registers, the WP7 application debugging is done entirely at the application
level, using C# code and types.

In addition to the above debug facilities, the .NET framework includes two specific classes, Debug and
Trace, that make it easy to write run-time debug messages to the output window. C# also supports an
assert statement, which is evaluated at run time. If the statement evaluates to true, nothing happens,
but if the statement returns false, the program breaks into a debugger.

 32

Summary

The Windows Phone 7 developer toolset includes rich tools designed to support every step in the entire
application development lifecycle. The design, development and testing tools are amenable to existing
iPhone team roles and processes. The tight integration between theWP7 tools can help you streamline
your design, development and testing workflow. These tools provide end-to-end functionality and are
highly customizable, with the power to make your team quickly productive.

 33

Chapter 4: C# programming introduced to
Objective-C programmers

In the previous chapter, we looked at the user interface guidelines for WP7 applications. We will now
dive deeper into what it takes to implement a WP7 application.

In this chapter, we will look at the various C# features that map to the most common Objective-C
features. We will provide code snippets which will ease your way into C# code. We will point to the key
C# features that help you write safe code and enhance productivity.

Introduction to Managed Programming

WP7 only supports managed programming in C# or VB.NET. Before we jump into the details of C#, let us
briefly review managed programming.

The C# compiler (and similarly, the VB compiler) compiles the C# (or VB.NET) code into an intermediate
language (IL) bytecode and metadata. The Common Language Runtime (CLR) executes the byte code. It
uses metadata to manage type safety, exception handling, array bounds, etc. The CLR also manages
memory and performs garbage collection. In contrast, Objective-C code is compiled into ARM binary
code and executed directly.

Comparison between C# Features and Objective-C Classes

http://blogs.msdn.com/b/brada/archive/2004/01/09/48925.aspx

 34

Class Declaration

Let us start with an example program. In contrast to Objective-C, C# does not separate the class
definition and the implementation. The compiler derives the metadata about the classes from the class
implementation itself. You will also notice that you do not need to define each class in a separate file as
in Objective-C.

In the example, the public signature of the class Person consists of just the property, age, and the
constructor. The rest of the class implementation is opaque.

using System; // C# does not import a .h file,

uses metadata

namespace FirstApplication // scope for classes. No Obj-c

counterpart

{

 class Person // only uses class implementation

 {

 private DateTime birthDate; // a private field accessible to

this class

 private int ageOn(DateTime date) // a private method

 {

 TimeSpan span = date.Subtract(birthDate); //uses a

.notation to invoke

 return span.Days;

 }

 public int age // this is a property.

 {

 Get // just a getter; it’s a read-

only property

 {

 return this.ageOn(DateTime.Now);

 }

 }

 public Person(DateTime dob) // instance constructor. Unlike

Objective-C

 { // it combines allocation and

initialization

 birthDate = dob;

 }

 }

 class Program //Unlike Obj-C, another class in

the same file.

 {

 static void Main(string[] args) // main entry point into the

program

 {

 Person p = new Person(new DateTime(1973,11,12));

 35

//construct an instance

 System.Console.WriteLine("The age is is" +

p.age.ToString());

 DateTime dt = p.birthDate; //error in compilation

birthDate is private

 }

 }

}

Instead of using the import statement, C# employs a using statement to refer to the metadata of
other classes. The namespace declaration, shown at the top of the file, is used to both declare scope
and organize the code. You can access classes in other namespaces by referring to a fully qualified name.
See the reference to System.Console.WriteLine in the example above, where console is in the System
namespace.

 Objective-C uses a message passing syntax consisting of square brackets, and a dot-notation for
accessing properties. C# uniformly uses the “.” notation for referring to all methods, fields and
properties.

Strong Typing

In contrast to Objective-C, C# is a very strongly typed language. Types must be specified for variables as
well as input/output parameters. Types are enforced strictly by the compiler. Objective-C uses weak
typing for collection classes such as NSArray and NSDictionary. In the section on generics below, we will
see how C# uses strong typing for collection classes.

int a = 5;

int b = a + 2; //OK

bool test = true; // OK

int c = a + test; // Error. Operator '+' cannot mix type 'int' and

'bool'.

The example above shows the strong typing for primitive types. Strong typing works similarly for all
classes.

Class Constructors

In contrast to the separate alloc and init statements of Objective-C, in C#, instance constructors are used
to create and initialize instances. For example, p, an instance of the Person class, can be both
constructed and initialized with a given birthdate, in a single statement.

 36

Properties

Developers often need to decide about whether to implement a member as a property or a method. In
this case, the design pattern is identical for Objective-C and C#. In general, the guidance is to use
properties when accessing data, and to use methods when there is an action taken on the data.

As opposed to the Objective-C @property attribute, C# properties are declared by the explicit definition
of a getter, a setter, or both. You can make the property read-only by providing just the getter, write-
only by providing just the setter or read-write, by providing both.

Parameter Types

Similarly to Objective-C, C# uses value parameters by default. While C# does not have pointers, it allows
passing of parameters by reference by using the ‘ref’ modifier. Instead of pointers, parameters with ref

can be used where you want to achieve side effects in a method. In some cases, reference parameters
are more efficient, since they avoid data copying.

C# also provides parameters with an out modifier which denotes parameters that must be initialized by
the called method before returning. This design pattern is often used to return the error in addition to
the value of the function.

Access Privileges

In Objective-C, access privilege can only be specified on variables. Methods which are present only in the
.m file are private. On the other hand, C# allows access privileges on fields (e.g., birthDate), properties
(e.g., age) and methods (e.g., ageOn). It uses public, private and protected as modifiers to
denote three different levels of access privileges.

In the above example, the compiler will error out on p.birthDate since that variable is private and
therefore is not accessible from the Program class. Similarly, the method ageOn is also private and
inaccessible from the Program class.

Methods with multiple parameters

Both Objective-C and C# support methods with multiple parameters. In Objective-C method parameters
are positional and named, i.e., the names of formal parameters are used while passing actual

 37

parameters. The name of the method is comprised of everything to the left of the colon (“:”), for
example, the name of the Objective-C method below is addEmployee:name:age:. While C# traditionally
used positional and unnamed parameters, the latest version of C# has also introduced named
parameters. The following example shows the comparative syntax for Objective-C and C#.

Objective-C C#
- (void) addEmployee:(NSString *)name
id:(int)id age:(int)age

void addEmployee(string name, int id, int
age);

[off addEmployee:@"Phil" id:2345 age:23]; Off.addEmployee("Phil",2345, 23);

Off.addEmployee(name: "Phil", age:23,
id:2345);

Objective-C does not support method overloading. While it does not allow exactly the same method
signature with different parameter types, the following design pattern is commonly used in Objetive-C
programs:

- (void)insert:(myClass *)obj atIndex:(NSInteger) index
- (void)insert:(myClass *)obj beforeObj:(myClass *)obj

[mylist insert:obj1 atIndex:4];

[mylist insert:obj2 beforeObj:obj1];

As we saw earlier, the names of these two methods are different and are “insert:atIndex” and
“insert:beforeObj” respectively.

On the other hand, C# explicitly supports method overloading. Using information about the parameter
types, C# disambiguates between methods with the same name.

void insert(myClass obj, int index);
void insert(myClass obj, myClass before);

The method insert may be called with both signatures:

list.insert(myObj1, 4);
list.insert(myObj1, myObj2);

Now that we have examined some of the basic class concepts in C#, let us look at another example:

using System;
namespace SecondApplication
{
 struct Point // In contrast to Obj-C, C# structs are closer
 { // classes.

 38

 public double x; // struct fields can also have access modifiers
 public double y;
 public Point(double p1, double p2) //a constructor for the struct
 {
 x = p1;
 y = p2;
 }
 }
 interface IThreeDShape // an interface, like an Objective-C protocol only
 { // defines the behavior
 double volume
 {
 get; // Volume is a read-only property. no setter
 }
 }
 abstract class Shape // this class is marked abstract, i.e. may not be instantiated.
 {
 protected Point origin; //only derived classes may access
 protected static int counter = 0; // Similar to class variables in Obj-C
 public string ID;
 protected Shape() //a constructor. Same name as the class name
 {
 counter++; // class variable being updated
 }
 public Point Origin // similar to objective-C property
 {
 set
 {
 origin = value;
 }
 }
 public abstract double Area //denotes that this property must be overridden
 { // in a derived class
 get;
 }
 public abstract bool contains(Point p); // this method must also be overridden
 }

 class Rectangle : Shape //Similar to obj-c, single iinheritance
 {
 public double length; //field accessible from others
 public double width;
 public Rectangle(Point o, double l, double w) //a public constructor
 {
 ID = "Rectangle_" + counter.ToString();
 origin = o;
 length = l; width = w;
 }
 public Rectangle(double l, double w) // one constructor using another constructor

//creates a rectangle at the origin
 : this(new Point(0, 0), l, w)
 {
 }
 public override double Area // unlike Obj-C, overridden method must
 { // use override keyword
 get
 {
 return length * width;
 }
 }
 public override bool contains(Point p)
 {
 if ((origin.x < p.x && origin.x + length > p.x) || (origin.x > p.x && origin.x - length < p.x))
 if ((origin.y < p.y && origin.y + length > p.y) || (origin.y > p.y && origin.y - length < p.y))
 return true;
 return false;
 }
 }
 class Square : Rectangle
 {
 public double side;
 public Square(double s)
 : base(s, s) //constructor
 {
 ID = "Square_" + counter.ToString();
 side = s;
 }

 39

 }
 class Cube : Shape, IThreeDShape //similar to obj-c, class implements interface (protocol)
 {
 public double side;
 public Cube(double s)
 {
 ID = "Cube_" + counter.ToString();
 side = s;
 }
 public override double Area
 {
 get
 {
 return 6 * side * side;
 }
 }
 public double volume
 {
 get
 {
 return side * side * side;
 }
 }
 public override bool contains(Point p)
 …
 }
 class SecondProgram
 {
 static void printVolume(IThreeDShape tdShape)
 {
 Console.WriteLine("The volume is " + tdShape.volume);
 }
 static void Main(string[] args)
 {
 Rectangle r = new Rectangle(5.0, 3.0);
 Cube c = new Cube(4.0);
 SecondProgram.printVolume(c);
 double a = r.Area;
 Console.WriteLine("The area of rectangle " + r.ID + " is " + a.ToString());
 bool b = r.contains(new Point(1, 2));
 Console.WriteLine("The point is in " + b.ToString()); // will print TRUE
 }
 }
}

 40

Inheritance

Like Objective-C, C# also uses a single inheritance mechanism. Inheritance is specified by listing the
parent class after the name of the class as shown below. In the above example, the class Rectangle
inherits from the class Shape, whereas the class Square inherits from the class Rectangle.

In C#, the constructor of the base class is automatically invoked when constructing an instance of a
derived class. However, a derived class can invoke a specific constructor of the base class if needed as
shown in the constructor of the Square class.

In contrast to Objective-C, a C# derived class may not override a method by just redefining it. The class
must use the keyword “override” in its method definition.

Protected Access

Objective-C provides protected variables, but methods cannot be protected. In C#, access to fields,
properties and methods can also be controlled using the protected modifier. You can implement
protected variables in C# by using the protected access modifier, as shown below:

Instance vs Class Level Access

While Objective-C and C# use different syntactic notation for static methods or variables, they behave
the same way. C# uses a ‘static’ modifier to denote class level methods, fields or properties. Everything
else is at an instance level. In the above example, counter is a class level variable.

 41

Abstract Classes

Abstract classes, are classes that cannot be instantiated. While Objective-C does not provide a syntax for
abstract classes, many programmers use them by returning NULL from the abstract class init method.
The class Shape, defined above in C#, is an abstract class and requires that both Area and the method
contains must be overridden in any derived classes.

Interfaces

Objective-C protocols and C# interfaces are similar. In the example below, IThreeDShape defines an
interface that is implemented by the Cube class.

Polymorphism

Polymorphism works the same way in both Objective-C and C#. A C# derived class can be passed as a
parameter to a method that expects a base class. Similarly, a class that implements a particular interface
can also be passed as a parameter to the method. This is shown in the example below, where an object
of the class Cube is passed as a parameter, where the method expects an object of the class
IThreeDShape.

 42

Structs

In contrast to the C-based structs used in Objective-C, C# structs are closer to classes. C# structs can
have constructors, methods and properties as well as access modifiers. However, the primary difference
between a struct and a class is that a struct is a value type, versus a class, which is a reference type.

Object Lifecycle – Creation and Deletion of Objects

Memory management is very different in Objective-C and C#. In contrast to Objective-C, C# performs
automatic memory management. As we saw earlier, developers do not allocate memory, but use the
“new” operator to create objects on the heap and initialize them. Equally important, in C#, the
developer is not responsible for tracking memory usage or knowing when to free memory. When the
object is no longer accessed by the code, the object is eligible for garbage collection. Periodically, the
.NET CLR garbage collector frees up the memory for such objects.

In rare circumstances, developers may need to perform cleanup at the time the object is destroyed. C#
allows the use of destructors, but in practice this is rare.

Other Topics

Type Checking v/s Reflection

In Objective-C, you can check the type of the class or determine if an object supports a particular
method and invoke the method on that object. In C#, reflection is a versatile feature. You can use
reflection to get the type information from an existing object, dynamically create an instance of a type,
bind the type to an existing object, invoke its methods or access its fields and properties.

 43

The following table explains the mapping between dynamic type checking in Objective-C and the
corresponding C# reflection features.

Objective-C Dynamic Type
Checking

Explanation C# Reflection

isKindOfClass: classObj Is Object a subclass or
member

type.IsSubclassOf(typeof(BaseClass))

isMemberOfClass: classObj Is Object a member of object.getType() or typeof

respondsToSelector: selector Does the object
implement the method

type.GetMethod(MethodName)

instancesRespondToSelector:
selector

Does the class respond to
the method

type.GetMethod(MethodName)

performSelector: selector Invoke a method type.InvokeMember(…)

Exception Handling

Exception handling is similar in C# and Objective-C. You use a try-catch block to handle exceptions.
Additionally, you can either catch specific exceptions or use a catch-all statement. This is similar to @try,
@catch and @finally statements in Objective-C.

 44

Key class libraries compared

Strings

C# provides a very comprehensive string class, which gives you all the features that you are familiar with
in the NSString class.

Objective-C
Feature

C# Notes

NSString String greeting = “Hello WP7!”;
Int length = greeting.Length;

Comparison String color = “pink”;
If (color == “red”)
System.Console.WriteLine(“Matching
colors!”);
string name = “Joe”;
if (string.compare(name, “Jack”) > 0)
 System.Console.WriteLine(name + “ comes
later”);

Strings can be compared using ==. They
can be compared lexicographically using
compare.

Concatenation System.Console.WriteLine (greeting + " You
rock!")

Strings can be concatenated with simple
‘+’ operator. (This is called operator
overloading)

Splitting string rainbow = "Violet, Indigo, Blue, Green,
Yellow, Orange, Red";
string[] rainbowColors = rainbos.Split(',');
foreach (string color in rainbowColors)
 System.Console.WriteLine (color);

 45

Arrays

Objective-C Feature C# Notes

Arrays of primitive
types such as int,
float

int[] table;
table = new int[3];
string[] names = new string[3] {"Peter", "Paul",
"Mary"};

Array size is not part of the array
declaration.
Arrays are explicitly initialized.

Multi-dim arrays of
primitive types

Int[,] mAray;
Int[][] jaggedArray;
string[][] singers = {new string[] {"Peter", "Paul",
"Mary"-, new string*+,“Paul”,“Art”--;

C# supports jagged arrays, or
arrays of arrays, and they need
not be rectangular.
Note Arrays of strings, i.e.
objects, work the same way.

NSArray - Immutable
Arrays of objects

 There is no counterpart to
immutable arrays in C#.

NSMutableArray
Mutable array of
objects

List<string> colors = new List<string>; //list of
strings
Colors.Add(“Red”);
Colors.Add(“Green”);
Colors.Insert(1,”White”);
String myColor = Colors*0+; //”Red”
Colors*colors.IndexOf(“Red”)+ = “Pink”; //
replace Red with pink

You can use Lists as a
replacement for mutable arrays.

You may also use ArrayLists.

 46

Dictionaries

C# provides a generic dictionary class that provides the functionality of NSMutableDictionary. It allows
addition, lookup and removal of objects in the dictionary. Since it uses generics, it also utilizes strong
typing.

Objective-C Feature C# Notes

NSDictionary - Immutable
dictionary

 There is no counterpart to
immutable dictionary in C#.

NSMutableDictionary -
Mutable dictiojary of
objects

Dictionary<string, int> d = new
Dictionary<string, int>();

d.Add("Honda", 124);

d.Add("Toyota", 95);

d.Add("Ford", 135);

// See if Dictionary contains string

if (d.ContainsKey("Ford")) // True

{

 int v = d["Ford"];

 Console.WriteLine(v);

}

You can use Dictionary as a
replacement for
NSMutableDictionary.

 47

New features of C#

Generics

Generics introduce the notion of type parameters, that make it possible to design classes that are type
safe, even though the actual type is deferred till the object instantiation. For example, here is how you
define a generic stack:

Stack<int> intStack = new Stack<int>(); // intStack is a stack

of int

intStack.Push(1); // OK

intStack.Push(2); // OK

int number = intStack.Pop(); // this is a type safe

assignment

Stack<string> strStack = new Stack<string>(); //the type of strStack

is different from type of intStack

strStack.Push("green"); // OK

strStack.Push(23); // compiler error

The Stack<T> uses T as a type parameter allowing you to instantiate a stack of any type, e.g. Stack<int>
or Stack<string> and use them in a type safe manner.

Use of generics is closest to the use of id in Objective-C collection classes such as NSDictionary.

Operator Overloading

Operator overloading permits a user defined implementation of user-defined operators for user-defined
classes. Consider the following example of a Complex number struct. Operator overloading allows you to
define a ‘+’ operation using a natural syntax.

public struct Complex

 {

 public int real;

 public int imaginary;

 // Declare which operator to overload (+), define how it is

computed

 public static Complex operator +(Complex c1, Complex c2)

 {

 return new Complex(c1.real + c2.real, c1.imaginary +

c2.imaginary);

 }

 …

 Complex c1 = new Complex(3.0, 4.0);

 Complex c2 = new Complex(4.0, 5.0);

 Complex cSum = c1 + c2;

Delegates

 48

Objective-C developers often use delegation for notification as to when an asynchronous operation is
completed. In C#, delegates are similar to function pointers in C or Objective-C. In this design pattern, a
class delegates another class, not known at compile time, to complete its action.

using System;

namespace DelegateExample

{

 public class ConsoleLogger

 {

 public static void WriteString(string s)

 {

 Console.WriteLine("Writing to console log: {0}", s);

 }

 }

 public class FileLogger

 {

 public static void LogString(string s)

 {

 Console.WriteLine("Logging to file log: {0}", s);

 }

 }

 public class DelegatesTest

 {

 public delegate void StringDelegate(string s);

 public static void Main()

 {

 StringDelegate Writer, Logger; // define twp

StringDelegate objects

 Writer = new StringDelegate(ConsoleLogger.WriteString); //

Create delegates with appropriate methods

 Logger = new StringDelegate(FileLogger.LogString);

 Writer("Warning message 1\n"); // Send to

Console Writer delegate method

 Logger("Warning message 2\n"); // Send to File

Logger delegate method

 StringDelegate MultiLogger; // to act as

the multicast delegate

 MultiLogger = Writer + Logger; // combine the

two delegates,

 MultiLogger("Warning message 3"); // This should

get sent to both delegates

 }

 }

}

Let us look at the above example, where StringDelegate is defined as a function that takes a string as a
parameter and returns void. Three different delegates, writer, logger and multiLogger, are constructed
by passing in methods that have the same signature as the StringDelegate declaration. This can be
contrasted with Objective-C delegates, which are usually defined using protocol declaration.

 49

Calling Writer invokes the writeString method of ConsoleLogger to print the message to the console. On
the other hand, calling Logger invokes the logString method of FileLogger to log the message to the file.
As you can see, delegates achieve indirection while providing type safety. Delegates may be
concatenated, as shown by MultiLogger, which logs the message to both loggers.

Events

Events in C# are useful in the pub-sub (publisher and subscriber) design pattern. Events are a very
powerful design pattern for asynchronous programming. An object can publish a set of events that
subscribers in turn subscribe to. When the publisher raises the event, all subscribers are notified. The
publisher raises the event without knowing who is listening to the events. Events are built using
delegates, as shown below.

using System;

namespace DelegateExample

{

 public class ConsoleLogger

 {

 public void WriteString(string s)

 {

 Console.WriteLine("Writing to console log: {0}", s);

 }

 }

 public class FileLogger

 {

 public void LogString(string s)

 {

 Console.WriteLine("Logging to file log: {0}", s);

 }

 }

 public class DelegatesTest

 {

 public delegate void LogEventHandler(string s); //

definition of the delegate.

 public static event LogEventHandler logEvent; //

the signature of the event.

 public static void Main()

 {

 ConsoleLogger cl = new ConsoleLogger(); //

create the first subscriber

 FileLogger fl = new FileLogger(); //

the second subscribe

 logEvent += new LogEventHandler(cl.WriteString); //

subscribe the event and hook up the

 logEvent += new LogEventHandler(fl.LogString); //

event handlers

 logEvent("A new event"); //

raise event which will invoke handlers

 50

 Console.ReadLine();

 }

 }

}

Summary

C# is a strongly typed, object oriented programming language that uses static binding. Many Objective-C
concepts map closely to corresponding C# concepts. This chapter is a quick introduction to how C#
concepts map to those of Objective-C. It provides a starting point for Objective-C users and points to
additional resources. Knowledge of object oriented programming, and Objective-C experience, will
provide a strong foundation to enable you to master C# quickly.

 51

Chapter 5: Image Format Considerations in
migration of iPhone applications to Windows
Phone 7

Images play a critical role in today’s mobile applications. Applications engage
users visually with images rather than with use of the written word. It is
important to account for resources such as images, video, and audio when you
plan your Windows Phone 7 project.

If you are planning to migrate or rewrite your iPhone application to Windows
Phone 7, it is important for you to reuse your existing images. However, due to
differences in the format, size and resolution of images on the two platforms,
you will not be able to use images from your iPhone application in your
Windows Phone 7 application. You should consider redesigning the images or
converting them. Redesigning images can be expensive whereas conversion of
images can be time consuming.

In this blog, we will cover what developers and designers should know about
the images in their Windows Phone 7 application. We will introduce the image sizes and formats
required by the Windows Phone 7 and show how they compare with the iPhone image formats. This will
help you plan your image conversion. We will provide some quick command line examples on how the
ImageMagick tool can be used for the conversion. We provide an introduction to a Microsoft Image
Converter tool, built on top of ImageMagick, that can be used to migrate your existing iPhone images to
work in the Windows Phone environment.

Critical role of Iconography in Windows Phone 7

Windows Phone 7 uses a unique design experience, called Metro, in the Windows Phone 7 OS and
applications. The WP7 application design and User interface guidelines blog provides guidance on the
look and feel of the application, including images and fonts. You are advised to pay close attention to
images being designed for the Windows Phone Application. It is important that your application behaves
consistently with the overall Windows Phone experience and stands out.

Metro Image Guidelines

Metro UI design uses a clean, light and open interface design model which puts emphasis on content
and not on the chrome. It uses flat, monochrome images for standard application tiles and toolbar icons.
It recommends that developers use Metro design guidelines in their applications to present a consistent
experience. You will need to redesign or convert some of your iPhone application images to be
consistent with the Windows Phone experience.

http://www.imagemagick.org/script/index.php
http://download.microsoft.com/download/D/8/6/D869941E-455D-4882-A6B8-0DBCAA6AF2D4/UI%20Design%20and%20Interaction%20Guide%20for%20Windows%20Phone%207%20Series.pdf

 52

Device resolutions

iPhone and Windows Phone devices use different screen sizes and screen resolutions. This can affect
how your images will look on the phone. If you use an existing image out of your iPhone application and
use it without modification in your Windows Phone 7 application, the result may not be pleasing.

 Resolution Size

iPhone 480x320 3.5 inch diagonal

iPhone 4 960x640 3.5 inch diagonal

Windows Phone 7 800x480 Varies from device to device

As you can see from the above table, because of the different screen resolution, images designed for
one platform cannot be used as is. They need to be - at least- resized to respect the aspect ratio of the
target platform. The problem is even more complex if the images don’t meet the resolution for the
Windows Phone 7 Platform. The image conversion process is more complex to preserve an acceptable
image quality.

 53

Differences in iPhone and WP7 Image Resolutions

Each platform has its own unique requirements when it comes to image sizes and their look and feel. As
you migrate or rewrite your application for Windows Phone 7 platform, you will realize that you might
be able to use some images without modification but others will need to be changed to make them look
right on the new platform.

Standard Image Requirements

The following table shows the comparison and association between iPhone and Windows Phone 7
image resolutions and types:

iPhone image type Resolution Resolution Windows Phone
image type

Application icon 57x57 or 114x114 for high
resolution

 173x173 for tile Application icon for
tiles

N/A 62x62 in app list Application icon in
app list

App store icon 512x512 99x99 small mobile
artwork

Market place icons

 173x173 large mobile
artwork

 200x200 in PC
marketplace catalog

Small icons for
search and settings

29x29 or 58x58 for high
resolution

 N/A

Tab bar icons 30x30 48x48 Application bar
icons

Tool bar / navigation
bar

20x20 N/A

Launch image 320x480 or 640x960 for high
resolution

 480x800 Splash screen image
or page background

N/A 1000x800 Background Art for
Panorama control

As you migrate your application to Windows Phone 7, you will need to scale the images up or down
depending on the type and resolution of your images. Here are some samples of iPhone and Windows
Phone 7 images.

In App Images

There are two types of iPhone images – those for iPhone 3 or before and those for iPhone 4, which are
also known as retina images. Retina images are higher resolution images. As we saw earlier, Windows
Phone 7 screen resolution of 800x480 is higher than iPhone 3 resolution but lower than iPhone 4
resolution. Application images designed for iPhone will need to be upscaled to be used in Windows

 54

Phone 7 applications. On the other hand, application images designed for the retina display will need to
be downscaled.

Windows Phone 7 Application Bar Images

Application bar icons on Windows Phone 7 should be 48 pixels by 48 pixels and must have a white
foreground on a transparent background using an alpha channel. The Application Bar colorizes the icon
according to the current style settings. Thus application bar icons must be designed appropriately for
them to display correctly on Windows Phone 7.

Other issues

Windows Phone 7 applications built using Silverlight handle images in JPEG or PNG format. GIF images
are not supported in Silverlight. If your application uses GIF images, they need to be converted to either
JPEG or PNG.

If your iPhone application PNG images are loaded via XCode, you should be aware that XCode optimizes
these images while bundling them. Using or converting PNG files from your iPhone application bundle
won’t work properly. Use images from your XCode source directory and not the application bundle.

Managing Images for Windows Phone 7 Projects

Let us look at different types of images required by Windows Phone 7 and understand what you need to
create such images using your iPhone image resources

In this section we look at various Windows Phone 7 images and how to generate these images from your
existing assets. One option is to use an open source tool called ImageMagick which is a very capable tool
but can be difficult to use. We have given command line options for ImageMagic for each Windows
Phone 7 images.

Microsoft Image Converter Tool

Microsoft has released an image converter tool, built on top of ImageMagick, to make the process of
converting images easier. It provides options to create various images required for Windows Phone 7
application and marketplace.

Unless specified, Windows Phone 7 images must be in PNG format. In the commands below, the target
parameter should be a PNG file.

 55

Large PC App Tile Artwork

This 200x200 image is displayed in the Windows Phone 7 marketplace in the Zune PC client software. To
convert an existing iPhone or other source image to this format, use the following options for the
ImageMagick tool

Convert <source> -resize 200x200! -unsharp 0x1.1+.5+0 <target>

With resize geometry parameter of 200x200! ImageMagick converts the image to 200 x 200 and ignore
the aspect ratio.

The same effect can be achieved using “Large PC App Tile Appwork” option in the Microsoft Image
Converter tool.

Small Mobile App Tile artwork

This image is used in the phone marketplace catalog. This image of size 99x99 is the smaller of the two
images used in the phone marketplace catalog. This image can be created using the following
ImageMagick convert options.

Convert <source>-resize 99x99 -unsharp 0x1.1+.5+0 <target>

You can also use Small Mobile App Tile Artwork option in the Microsoft Image Converter tool.

 56

Large Mobile App Tile artwork:

This image is used in the phone marketplace catalog. This is the larger of the two images used in the
phone marketplace catalog.

The same size image is also used in the start experience on the phone. An Image of size 173x173 is used
when the user pins the application to Start on the phone. The image must be in the PNG format

To create convert the image using ImageMagick convert tool, use:

Convert <source> -resize 173x173 -unsharp 0x1.1+.5+0 <target>

You can use the “Large Mobile App Tile Artwork” option in the Microsoft Image Converter tool.

WP7 Tile:

This image is used on the phone applist and must be a PNG image of size 62x62. To create convert the
image using ImageMagick convert tool, use:

Convert <source> -resize 62x62 -unsharp 0x1.1+.5+0 <target>

You can also use the “WP7 Tile” option in the Microsoft Image Converter tool.

Panorama Background

This panorama artwork becomes the background for your application if it is a featured app on the
Marketplace. This is an optional image of size 1000x800. Use the following options to convert the image
to this format:

Convert <source> -resize 1000x800! -unsharp 0x1.1+.5+0 <target>

You can also use the “Background Art“option in the Microsoft Image Converter tool.

Details Page Screenshot

These images provide a preview of your app or game to users who are browsing your App details page
on Windows Phone Marketplace. You must provide minimum one or maximum of 8 such images. Use
the following options to convert the image to this format:

Convert <source> -resize 480x800! -unsharp 0x1.1+.5+0 <target>

You can also use the “Details Page Screenshot“option in the Microsoft Image Converter tool.

Flatten Images for application bar icons

 57

Windows Phone 7 application bar icons are flat monochrome images with transparent background and
white foreground, as described above. You can use the following ImageMagick options to create such
images from iPhone tab bar icons which are monochrome. If you are transforming other multi-chrome
images, you will need to use different options.

convert.exe <source> (+clone) -compose Difference -composite -modulate 100,0 +matte -threshold 0 -
fill black +opaque rgb(255,255,255) -transparent black <target>

Or you can use the “flatten” option in the Microsoft Image Converter . If you are converting from an
iPhone 4 image, use Retina option otherwise choose iPhone 3G option.

Convert Image Format

Since Windows Phone 7 does not support GIF images, you will need to convert your GIF images to PNG
(or JPEG). Use the following option for converting your image format.

Convert <source> <target>

You may use the “Convert Format” to convert the format of images using Microsoft Image Converter
tool.

Resize Images

Due to differences in the iPhone and Windows Phone 7 screen size, screen resolution and aspect ratio,
you will need to convert your other image assets. Use the following ImageMagick convert options to
resize the images

Convert <source> -resize <app geometry> <target>

You may use the Microsoft Image Converter tool to resize images. Use Retina if you are resizing the
image from iPhone 4 project or iPhone 3G otherwise.

 58

Learn Further about the Windows Phone 7 Image Format

UI Design and Interaction Guide for Windows Phone 7 and Windows Phone 7 Certification Guide provide
definitive requirements for the resolution and types of images required for each Windows Phone 7
applications. The UI design guide provides guidance on the design of application bar icons.

Design New Images

Some of the WP7 images such as application tile or application list are particularly important since they
always remain visible to users. They must be high quality and engaging. You may decide to redesign
these images or start from the converted images and modify them further to suit your needs. Windows
Phone 7 images may be designed using Microsoft Expression Design or Adobe Photoshop.

Conclusion

ISVs who want to migrate or rewrite their applications for Windows Phone 7 need to be aware that their
images may need to be transformed to make them captivating on the Windows Phone. The differences
in images on two platform are due differences in the screen resolutions and as well as in the standard
image formats chosen for each platform. Redesigning the images may be an expensive and time
consuming option. You can start by converting existing images using open source tool such as
ImageMagick and customize them further.

Resources

1. Windows Phone 7 UI Design and Interaction Guide

2. Windows Phone 7 Application Certification Requirements

3. Microsoft’s Windows Phone 7 Interoperability site

4. Microsoft iPhone to Windows Phone 7 Image Conversion Tool

5. ImageMagick tool

http://download.microsoft.com/download/D/8/6/D869941E-455D-4882-A6B8-0DBCAA6AF2D4/UI%20Design%20and%20Interaction%20Guide%20for%20Windows%20Phone%207%20Series.pdf
http://go.microsoft.com/fwlink/?LinkID=183220
http://download.microsoft.com/download/D/8/6/D869941E-455D-4882-A6B8-0DBCAA6AF2D4/UI%20Design%20and%20Interaction%20Guide%20for%20Windows%20Phone%207%20Series.pdf
http://go.microsoft.com/fwlink/?LinkID=183220
http://windowsphone.interoperabilitybridges.com/
http://www.imagemagick.org/script/index.php

 59

Chapter 6: Application Lifecycle Differences
Between Windows Phone 7 and the iPhone

In this chapter, we are going to look at the navigation model of the Windows Phone 7. We will examine
the various application states needed to support the navigation model, and what the developer needs to
do to support those application states and the transitions between them. We will then look at what the
developer needs to do to duplicate iPhone multitasking.

iPhone and Windows Phone 7 Navigation Models

Technically speaking, both the iPhone and the Windows Phone 7 allow only one application to execute
in the foreground at a time. The foreground application owns the screen and receives the touch events.
Let us briefly review the iPhone execution model.

iPhone Execution Model

With iOS4, the iPhone introduced multitasking, with the ability to do fast application switching. When
the user clicks the home button, instead of terminating, the currently executing application is put into a
background running state. In this state, the application is expected to save the data. If the user switches
back to this application, after using another application, the background application transitions to
foreground and is made active again, at which time the user can resume where he/she was.
Additionally, iOS4 also supports other forms of multitasking, such as task completion or background
execution for applications using audio, location or VOIP.

Windows Phone 7 Navigation Model

In Windows Phone 7, the user can switch to another application in two different ways. The user can hit
the start button at any time to reach the Start page and launch another application. The user can also
use the back button to navigate out of an application.

For example, consider that the user is composing a blog post, using the WordPress application, and then
hits the start button to reach the Start screen, at which time the WordPress application is deactivated.
The user then opens up the Facebook application. At this time, the Facebook application is launched.

The hardware back button allows the user to navigate back between pages within an application, or
across applications. In the above example, the user can hit the back button while in the Facebook
application, to first reach the WP7 Start screen, and hit the back button again to go back to the
WordPress application. The WordPress application would open with the compose screen, exactly how
and where the user left it.

While WP7 does not support actual multitasking, the WP7 navigation model allows a natural navigation

 60

much like the browser back button. The application state is preserved as the user navigates across
applications using the back button.

The following table provides an overview of various events and the behavior of the application on iOS
and Windows Phone 7.

User Action or Event iOS 4.0 Behavior WP7 Behavior

An incoming phone call or SMS Running application is moved to
the background but running

Running application is
deactivated

User Clicks the home button Running application is moved to
the background but running

Running application is
deactivated

User Clicks another application
from the multitasking menu

Background application is moved
to foreground and made active
to its original state

-

Navigation between applications
using back button

- Deactivated or tombstoned
application is activated to its
original state

Programming for application States and navigation

On both the iPhone and WP7, the developers need to take certain steps to support the application life
cycle.

iPhone support for multitasking

In order to support fast application switching, iPhone application developers have certain
responsibilities. When the application is moved to the background, they need to save the application
state, which is then restored when the application is subsequently moved again to the foreground.

In particular, the application moving to background will receive a callback,
applicationDidEnterBackground, at which time the application should do the bookkeeping,
save the state and reduce the application memory footprint. When the user relaunches the application
using the multitasking UI, the application will receive the applicationWillEnterForeground
callback at which time the application should restore the state.

When the application is launched from the application icon, the application receives the
applicationDidBecomeActive callback, at which time the application can initialize the state.
When the application becomes inactive, due to an interrupt such as a phone call, it receives the
applicationWillResignActive event at which time, so it can save the state, as it may be
moved to the background.

Windows Phone 7 LifeCycle

 61

Launching the Application When the user launches the application for the first time, the application
receives the Application_Launching event. In order to provide fast startup response, the
application should do little work in this event handler. In particular, it should avoid any web downloads
or isolatedStorage (see below) data fetch operations. Once active, it can initialize the state or load any
saved state.

Terminating the Application While the application is running, the user may terminate it by navigating
out of the application using the back button. At this time, the application will receive the
Application_Closing event. In response, the application should perform any cleanup and save
the persistent application data to isolatedStorage.

Deactivating the Application and Tombstoning While the application is running, the user can hit the
Start button or launch another application via launchers or choosers. The user may launch the browser
by clicking on a link in the application.

Similar to an application that is closed, an application that is deactivated is also terminated. However,
unlike a closed application, for a deactivated application, the OS stores a record (a tombstone) for the
state of the application. This is maintained as part of the application back stack which is used to facilitate
navigation using the back button.

In these cases, the application is sent an Application_Deactivated event, at which time the
application should save all persistent data to isolatedStorage and all transient data, such as the values of
page fields, using PhoneApplicationPage.state.

Reactivating the Application Upon completing the launcher, or the user navigating back into an
application using the back button, the application will be reactivated. Upon reactivation, the application
will receive the Application_Activated event. Since the application is being reactivated from a
tombstone state, the application should load the persistent state data from the isolatedStorage and the
transient state data from PhoneApplicationPage.state.

Windows Phone 7 Application State Transition Diagram

The following state diagram shows the various states and explains what the developer should do in
response to various events.

 62

 63

WP7 LifeCycle and Tombstoning Example

Let us look at a simple example that illustrates the Windows Phone 7 state transitions and tombstoning.
This is a one page shopping list application where the user can add items to the list. When the user
leaves the application, the shopping list is saved automatically.

Saving the Application State

On the iPhone, you may be saving the state in a number of different ways. On the iPhone, using
NSUserDefaults, using files in the Documents folder of the application, or using SQLLite are all possible
ways to save application state data.

To save the persistent state of the application on WP7, i.e., the shopping list, we are going to use
isolatedStorage. isolatedStorage is a safe storage that is accessible only to that application. It ensures
that one application cannot affect another application. To save the state, we first get the isolatedStore
for the application. We then create a file in isolatedStorage, in which to save the persistent state. To
save the shopping list, we first serialize the list and then save it to the file.

public static void SaveShoppingList(ShoppingListInfo shoppingListInfo, string fileName)

{

 //Get the isolatedStore for this application

 using (IsolatedStorageFile isf = IsolatedStorageFile.GetUserStoreForApplication())

 {

 // create a new file

 using (IsolatedStorageFileStream fs = isf.CreateFile(fileName))

 {

 //and serialize data and save it

 XmlSerializer xmlSer = new XmlSerializer(typeof(ShoppingListInfo));

 xmlSer.Serialize(fs, shoppingListInfo);

 }

 }

}

In order to save transient state, WP7 provides another class called PhoneApplicationService.State. We
will see the use of this object below.

Terminating the application

When the user uses the back button to leave the application, the application is terminated. What the
application should save during termination depends upon the nature of the application. In this example,
we will save the work without asking the user so that when the user next opens the application, the
shopping list is intact. In this example, we will not save any item that the user was typing in the item
textbox. We use the helper method defined earlier to save the shopping list. Such cleanup and state
saving may be performed in response to the Application_Closing event instead of OnBackKeyPress.

 64

protected override void OnBackKeyPress(System.ComponentModel.CancelEventArgs e)
{
 base.OnBackKeyPress(e);
 //do not save what is in the item, i.e. it is transient
 txtItem.Text = "";
 //preserve data in persistent store
 Utils.SaveShoppingList((App.Current.RootVisual as PhoneApplicationFrame).DataContext as
ShoppingListInfo,
 "ShoppingListInfo.dat");
 }
}

This event is comparable to the ApplicationWillTerminate callback in versions prior to iOS4. In iOS4,
there is no equivalent to this operation, as the state of the application will already be saved in response
to the applicationDidEnterBackground callback.

Application Launching

When the application is launched from the Start screen, the application received the
Application_Launching event. This is equivalent to the application receiving
applicationDidFinishLaunchingWithOptions and applicationDidBecomeActive
callbacks in iOS4.

During launch, we will examine whether any persistent data is available. If we find the persistent data,
we will load it into the txtList textbox to preserve the shopping list. We first get the isolatedStore for the
application. Using the isolated store, we check if the ShoppingListInfo.dat file exists. If it is available, we
deserialize the data that was stored in the file and reload the ShoppingListInfo. The fields in the
application are databound using the last line in this snippet. If you run the application, you will find that
the shopping list is preserved, upon relaunching the application.

 // Code to execute when the application is launching (eg, from Start)

 // This code will not execute when the application is reactivated

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

 //Trace the event for debug purposes

 Utils.Trace("Application Launching");

 //Create new data object variable

 ShoppingListInfo shoppingListInfo = null;

 //Try to load previously saved data from IsolatedStorage

 using (IsolatedStorageFile isf = IsolatedStorageFile.GetUserStoreForApplication())

 {

 //Check if file exits

 if (isf.FileExists("ShoppingListInfo.dat"))

 {

 using (IsolatedStorageFileStream fs = isf.OpenFile("ShoppingListInfo.dat",

System.IO.FileMode.Open))

 {

 //Read the file contents and try to deserialize it back to data object

 XmlSerializer ser = new XmlSerializer(typeof(ShoppingListInfo));

 object obj = ser.Deserialize(fs);

 //If successfully deserialized, initialize data object variable with it

 if (null != obj && obj is ShoppingListInfo)

 shoppingListInfo = obj as ShoppingListInfo;

 else

 shoppingListInfo = new ShoppingListInfo();

 }

 65

 }

 else

 //If previous data not found, create new instance

 shoppingListInfo = new ShoppingListInfo();

 }

 //Set data variable (either recovered or new) as a DataContext for all the pages of

the application

 RootFrame.DataContext = shoppingListInfo;

 }

Application Deactivation

Let us examine what happens when the user hits the start button while running the application. When
the user hits the home button in the iPhone, the application receives the
applicationDidEnterBackground callback. On WP7, the application will receive the
Application_Deactivated event. In response to this event, we will save the entire application
state, i.e. the shopping list as well as the anything entered in the item textbox. If this application is
reactivated, we will restore both textboxes to provide the same experience as if the user had navigated
back into the application.

We will also save the transient application state; for this, we will use the PhoneApplicationService.State
object.

 // Code to execute when the application is deactivated (sent to background)
 // This code will not execute when the application is closing
 private void Application_Deactivated(object sender, DeactivatedEventArgs e)
 {
 //Trace the event for debug purposes

 66

 Utils.Trace("Application Deactivated");

 //Add current data object to Application state
 PhoneApplicationService.Current.State.Add("UnsavedShoppingListInfo",
RootFrame.DataContext as ShoppingListInfo);
 }

Application Activation

 When the user uses back button to navigate into the application, the application receives the
Application_Activated event. In response to this event, we will reload the data from the
PhoneApplicationService.State object. If we find the necessary data, we will load the UI
elements using that data. If we do not find any saved data, the fields will get initialized to blanks. If you
run the application, then hit the home key and navigate back into the application using the back button,
you will find that both the shopping item and the shopping list are preserved.

 // Code to execute when the application is activated (brought to foreground)

 // This code will not execute when the application is first launched

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

 //Trace the event for debug purposes

 Utils.Trace("Application Activated");

 //Create new data object variable

 ShoppingListInfo shoppingListInfo = null;

 //Try to locate previous data in transient state of the application

 if (PhoneApplicationService.Current.State.ContainsKey("UnsavedShoppingListInfo"))

 {

 //If found, initialize the data variable and remove in from application's state

 shoppingListInfo =

PhoneApplicationService.Current.State["UnsavedShoppingListInfo"] as ShoppingListInfo;

 PhoneApplicationService.Current.State.Remove("UnsavedShoppingListInfo");

 }

 //If found set it as a DataContext for all the pages of the application

 //An application is not guaranteed to be activated after it has been tombstoned,

 //thus if not found create new data object

 if (null != shoppingListInfo)

 RootFrame.DataContext = shoppingListInfo;

 else

 RootFrame.DataContext = new ShoppingListInfo();

 }

 67

iOS and Windows Phone 7 State and Event mapping

The following table provides mapping between iOS callbacks and Windows Phone 7 events related to
the application lifecycle. While Windows Phone 7 does not provide multitasking, support for navigation
using the back button requires that the application save the state during application deactivation and
reload it when the user reactivates the application.

iOS Callback Windows Phone 7 Event Notes

applicationDidFinishLaunchingWighOptions -

applicationDidBecomeActive Application_Launching Load Application persistent state

applicationWillResignActive -

applicationDidEnterBackground Application_Deactivated Save application state

applicationWillEnterForeground Application_Activated Reload application state

applicationWillterminate Application_Closing

Save Application Persistent state

Summary

 68

In this chapter we looked at the Windows Phone 7 application states and transitions between them. We
looked at what the developer needs to do to support the Windows Phone 7 navigation model. While the
application model differs between the iPhone and Windows Phone 7, the developer needs to preserve
the application state in much the same manner when the current application is moved from the
foreground and is deactivated.

Resources

1. Introducing the Windows Phone Application Life Cycle—Tombstoning
2. Execution Model for Windows Phone
3. Windows Phone Application Lifecycle

http://msdn.microsoft.com/en-us/wp7trainingcourse_applicationlifetimewp7lab_topic2.aspx#_Toc266462784
http://msdn.microsoft.com/en-us/library/ff769557(VS.92).aspx
http://channel9.msdn.com/Blogs/yochay/Windows-Phone-Application-Life-Cycle

 69

Chapter 7: iPhone to Windows Phone 7
Application Preference Migration

Application Preferences

Preferences are application-specific settings that define the look and feel and behavior of an application.
The user can update the preferences at any time to change the behavior of the application.

Both iPhone and Windows Phone provide easy means to update application settings. They both follow a
similar philosophy of ease of use and simplicity. However, they follow different ways for presenting and
implementing application preferences.

iPhone Application Preferences

On the iPhone, applications have two options for presenting preferences.

 Display preferences inside the application.

 Manage preferences from the system wide Settings application.

While the developer can use either mechanism to implement the preferences, the second way to
manage application preferences via the Settings application is the preferred one. If the developer
expects that the settings will be updated frequently, it may be better to include the preferences within
the application. Developers may use both mechanisms.

The Settings application implements a hierarchical set of pages for managing application preferences.
The main page shows the system preferences and links to the pages for third party applications.
Selecting the application preferences link takes the user to the preferences page for that application.
We will look at how to migrate the iPhone application preferences presented using the preferred way,
i.e. via the Settings application.

Windows Phone 7 Application Preferences

Windows Phone 7 provides a Settings application for system and system application settings. In contrast
to iPhone, third party application settings cannot be placed within this system Settings application.
Application settings must be part of the application. This provides consistency and ease of use; users are
not confused about where to look for the settings and avoids having to look for settings in both central
settings application and the application pages.

Windows Phone 7 UI Design and Interaction Guide recommends that developers keep the application
settings brief and clear to improve the usability, and also that they avoid complex multi-level, multi-page
application settings. As such, the application should be designed for the most common use. If the
application has several user-selectable settings, it should create a separate settings page within the
application. This allows the user to update the settings without leaving the application.

http://go.microsoft.com/fwlink/?LinkID=183218

 70

 Changes to application settings should be applied immediately without confirmation. This means that
confirmation dialog such as “OK” is not needed. However, you may inform the user that the settings
have been updated. Any settings that that cannot be undone or overwrite or delete data should allow
the user to opt out by canceling the change.

Comparison between the two platforms

The following table provides the comparison between the two platforms.

Purpose iPhone Windows Phone 7

Application Preferences System wide settings application
In-Application preference pages

In Application preference page

Preferred/Required System wide settings application In-app preferences required

Preference UI Declarative syntax for System
wide Settings

Developer implements a page
for in-app preferences

Developer implements in-app
page for in-app preferences

Storage mechanism Application specific file store IsolatedStorage

Preferences Saved as key-value pairs Saved as key- value pairs

Migrating Application Preferences

Overview of iPhone Application Preferences

iPhone provides a Settings bundle to manage preferences from the Settings application. The Settings
bundle consists of Root.plist and other .plist files as well as files that store localized string resources. The
system uses the .plist files to present the UI for the application preference page. The Settings page .plist
file consists of specifications for preference parameter types. For the preferences included within the
application, the developer needs to implement the view to access and manipulate the preferences.

Regardless of how the application preferences are presented to the user, the application developer uses
NSUserDefaults class to access the preferences from the code. The NSUserDefaults class provides a
dictionary to store key-value pairs which are persisted in the .plist file in the application-specific file
store.

Windows Phone 7 Application Preferences

Application Preference UI

In Windows Phone 7 the developer needs to implement the pages for accessing and manipulating
application preferences. The settings pages are no different from any other application page and one
can use all available Windows Phone UI widgets to manipulate the preferences.

 71

Let us look at the types of iPhone application settings and how they can be migrated to Windows Phone
7. The following table shows iPhone preference types and the types of controls. The right hand column
shows the corresponding Windows Phone 7 controls that can be used to migrate them.

iPhone Preference
control

iPhone preference type Purpose Corresponding Window
Phone Control type

Text Field PSTextFieldSpecifier Editable text field for string
parameter

TextBox

Title PSTitleValueSpecifier Read-only string value TextBlock

Toggle switch PSToggleSwitchSpecifier Preference that can have
only two values

Checkbox

Slider PSSliderSpecifier Preference that represents
range of values

Slider

Multi-value PSMultiValueSpecifier Selection of one value from
a list

RadioButtons or ListBox

Group PSGroupSpecifier Organize collection of
preferences together

StackPanel, Grid, or
Table

ChildPane PSChildPaneSpecifier Navigate to a different page
of preferences

Button, link to navigate

Persisting User Preferences

Windows Phone 7 uses isolatedStorageSettings class. IsolatedStorageSettings is implemented using
IsolatedStorage which provides complete isolation between applications. IsolatedStorage provides
safety as one application cannot access settings of other applications or affect other applications.
IsolatedStorageSettings class provides a dictionary to store preferences as key value pairs.

Application preferences presented via the preference page can be written to IsolatedStorage. The
following code snippet shows how to write the settings to IsolatedStorage. All application preferences
are stored as key-value pairs where the key represents the name of the preference.

// isolated storage settings
IsolatedStorageSettings isolatedStoreSettings;
try
{
 // Get the settings for this application.
 isolatedStoreSettings = IsolatedStorageSettings.ApplicationSettings;
}
catch (Exception e)
{
 Debug.WriteLine("Exception getting IsolatedStorageSettings.ApplicationSettings: " + e.ToString());
}

// Save the application settings
try
{
 // check if the key exists. If not create it
 if (!isolatedStoreSettings.Contains(Key))
 {
 isolatedStoreSettings.Add(Key, value);
 }
 else
 {

http://www.iphonesdkarticles.com/#AP2
http://www.iphonesdkarticles.com/#AP3
http://www.iphonesdkarticles.com/#AP4
http://www.iphonesdkarticles.com/#AP5
http://www.iphonesdkarticles.com/#AP6
http://www.iphonesdkarticles.com/#AP7

 72

 // if new value is different, set the new value.
 if (isolatedStoreSettings[Key] != value)
 {
 isolatedStoreSettings[Key] = value;
 }
 }
}
catch (Exception e)
{
 Debug.WriteLine("Exception in IsolatedStoreSettings: " + e.ToString());
 throw e;
}

On the iPhone, the Settings application handles the persisting of application settings to the application
defaults database. The defaults database is provided via the on-device .plist file. However, if your
application presents preferences via application pages, you will see that the Windows Phone 7 isolated
storage is similar to NSUserDefaults.

// get the handle to application NSUserDefaults

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

// saving a string preference value to a key named “nickname”

[prefs setObject:@"DarthVader" forKey:@"nickname"];

// synchronize to persist them to file store

[prefs synchronize];

 73

Reading Application Preferences

iPhone uses NSUserDefaults to access application preferences. Here is a typical code snippet to access a
preference.

// get the handle to application NSUserDefaults

NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

// getting an NSString preference value

NSString *UserNickname = (NSString *)[prefs objectForKey:@"nickname"];

The corresponding code snippet for retrieving application settings is shown below. As you can see, the
iPhone application retrieval code can be migrated easily to Windows Phone 7.

 string UserNickname;
 try
 {
 UserNickName = (string)isolatedStoreSettings["nickname"];
 }
 catch (KeyNotFoundException)
 {
 Debug.WriteLine("Nickname not found");

 }
 catch (Exception e)
 {
 Debug.WriteLine("Exception in reading from IsolatedStorageSettings: " + e.ToString());

 }

Purpose iPhone mechanism Windows Phone 7 mechanism

Preference store NSUserDefaults backed by application
file store

Persistent application specific store:
Isolated Storage

Access
persistent store

[NSUserDefaults standardUserDefaults] IsolatedStorageSettings.ApplicationSettings;

Write
Preference

[[NSUserDefaults

standardUserDefaults]

setObject:value forKey:@"Key"];

isolatedStoreSettings.Add("Key", value);

isolatedStoreSettings["Key"] = value;

Read Preference // getting a preference object

[prefs objectForKey:@"Key"];
isolatedStoreSettings["Key"];

 74

Migration Sample

Let us look at migrating simple application preferences from iPhone to Windows Phone 7. In our
ReadPoetry application, there are only two preferences, namely, font size and night mode. In the
normal mode, the application uses black fonts on a white background whereas in the night mode it uses
white fonts on a black background.

Create Initial Application

Open Visual Studio 2010 for Windows Phone and create a new application using Windows Phone
Application template. Name it ReadingPoetry and click OK.

 Open MainPage.xaml using Solution Explorer. Right click on the application title and select view XAML
to edit the title to “READING POETRY”. Similarly, edit the Page Title to “jabberwocky”. Your TitlePanel
XAML should look like following:

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="READING POETRY" Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="jabberwocky" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>
</StackPanel>

In the ContentPanel Grid, add the following TextBlock with the poem in it (with all those LineBreaks).
Your XAML should now look like this:

<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <TextBlock Name="PoetryBlock">
 `Twas brillig, and the slithy toves<LineBreak/>
 Did gyre and gimble in the wabe:<LineBreak/>
 All mimsy were the borogoves,<LineBreak/>

 75

 And the mome raths outgrabe.<LineBreak/>
 <LineBreak/>
 "Beware the Jabberwock, my son!<LineBreak/>
 The jaws that bite, the claws that catch!<LineBreak/>
 Beware the Jubjub bird, and shun<LineBreak/>
 The frumious Bandersnatch!"<LineBreak/>
 <LineBreak/>
 </TextBlock>
</Grid>

You can now run your application with ‘F5’ to see the application display first two stanzas of
Jabberwocky.

 76

Add Application Bar

We will first add an icon for application settings to our application. In Solution Explorer, right click
ReadingPoetry project and select Add followed by New Folder and rename it to Images. Using Windows
Explorer, find your Windows Phone SDK Icons directory (typically at C:\Program Files (x86)\Microsoft
SDKs\Windows Phone\v7.0\Icons) and copy appbar.feature.settings.rest.png to newly created Images
folder from the “dark” subdirectory.

Right click on appbar.feature.settings.rest.png in Solution Explorer and select Properties. Change the
Build Action to “Content” and Copy to Output Directory to “Copy Always.”

Now we will add an Application Bar to our application. Uncomment XAML underneath “<!--Sample code
showing usage of ApplicationBar-->” to add the application bar. Delete the Second
ApplicationBarIconButton as well as the entire ApplicationBar.MenuItems node. Update the IconUri for
the first ApplicationBarIconButton to "/Images/appbar.feature.settings.rest.png".

Your XAML should look like following
<!--Sample code showing usage of ApplicationBar-->
<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton IconUri="/Images/appbar.feature.settings.rest.png"
Text="Settings"/>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

 77

Hit F5 to run the application again and now it should show the poem along with the application bar at
the bottom as shown below. Of course, if you click on the settings icon, nothing will happens which is
expected.In the next section we will create an event handler for it.

Create Settings Page

Stop the application and right click on the ReadingPoetry project in Solution Explorer and click Add
followed by New Item and select Windows Phone Portrait Page and change its name to
“Settings.xaml”. Settings.xaml should open up in Visual Studio.

Follow the above procedure to update the ApplicationTitle TextBlock to “SETTINGS” and PageTitle
TextBlock to “reading poetry.”

<!--TitlePanel contains the name of the application and page title-->
<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="SETTINGS" Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="reading poetry" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>
</StackPanel>

We will now migrate iPhone application preferences to our Windows Phone 7 application. We will use a
check box instead of the toggle switch used for Night Mode. On the other hand, we will use radio
buttons instead of multi-value control for font size.

 78

Use TextBlock, CheckBox and RadioButtons to create the user interface for the settings page. The XAML
should look like the following:

<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <StackPanel>
 <TextBlock Text="Mode" FontSize="28"></TextBlock>
 <CheckBox FontSize="24" Margin="30,0,0,0" Name="NightModeCheckbox" Content="Night Mode" />
 <TextBlock Text="Font Size" FontSize="28"></TextBlock>
 <RadioButton Name="FontSizeSmallBtn" Margin="30,0,0,0" GroupName="FontSizeGroup" FontSize="24" Content="Small"/>
 <RadioButton Name="FontSizeMedBtn" Margin="30,0,0,0" GroupName="FontSizeGroup" FontSize="24" Content="Medium"/>
 <RadioButton Name="FontSizeLargeBtn" Margin="30,0,0,0" GroupName="FontSizeGroup" FontSize="24" Content="Large"/>
 </StackPanel>
</Grid>

Now we will hook up the new page with the settings icon.

Go back to MainPage.xaml and in the ApplicationBarIconButton tag and type space at the end and select
Click and type return at which time Visual Studio will offer to create a New Event Handler.

Select New Event Handler and it will create ApplicationBarIconButton_click event handler in the code
behind. Your XAML for ApplicationBarIconButton should look like this

<shell:ApplicationBarIconButton Click="ApplicationBarIconButton_Click"
IconUri="/Images/appbar.feature.settings.rest.png" Text="Settings"/>

Right click on XAMLand select View Code which will open MainPage.xaml.cs file which should include a
method ApplicationBarIconButton_Click. Add the following code so that your method look like this:

private void ApplicationBarIconButton_Click(object sender, EventArgs e)
{
 this.NavigationService.Navigate(new Uri("/Settings.xaml", UriKind.Relative));
}

 79

Hit F5 again to run the application. If you click on the settings icon, it will open the settings page as
shown below. You can click on the settings but nothing will happen which is expected as we do not have
code to save or retrieve settings.

Saving and Retrieving Application Settings

Right click on ReadingPoetry project in Solution Explorer and select Add followed by Class. In the add
new item dialog, type AppSettings.cs as the name of the class.

Declare IsolatedStorageSettings as shown below and initialize it in the class constructor as shown below.

// isolated storage settings
IsolatedStorageSettings isolatedStoreSettings;

// Constructor for the application settings.
public AppSettings()
{
 try
 {
 // Get the settings for this application.
 isolatedStoreSettings = IsolatedStorageSettings.ApplicationSettings;
 }
 catch (Exception e)
 {
 Debug.WriteLine("Exception getting IsolatedStorageSettings.ApplicationSettings: " + e.ToString());
 }
}

Now write three routines to write, read and save the application settings.

// Update the settings. If the setting does not exist, then add the setting.
public bool AddUpdateSetting(string Key, Object value)
{
 bool updated = false;
 try

 80

 {
 if (!isolatedStoreSettings.Contains(Key))
 {
 isolatedStoreSettings.Add(Key, value);
 updated = true;
 }
 else
 {
 // if new value is different, set the new value.
 if (isolatedStoreSettings[Key] != value)
 {
 isolatedStoreSettings[Key] = value;
 updated = true;
 }
 }
 }
 catch (Exception e)
 {
 Debug.WriteLine("Exception in IsolatedStoreSettings: " + e.ToString());
 throw e;
 }
 return updated;
}

In the read routine, we will get the value from the isolateStoreSettings dictionary using our key

// Get the current value of the setting, or if not found, set to the setting.
public valueType GetSettingValue<valueType>(string Key, valueType val)
{
 try
 {
 if (!isolatedStoreSettings.Contains(Key))
 {
 isolatedStoreSettings.Add(Key, val);
 return val;
 }
 else
 {
 return (valueType) isolatedStoreSettings[Key];
 }
 }
 catch (Exception e)
 {
 Debug.WriteLine("Exception in IsolatedStoreSettings: " + e.ToString());
 throw e;
 }
}

Finally, the save routine will save the settings to the persistent store.

// Save the settings.
public void Save()
{
 isolatedStoreSettings.Save();
}

 81

With these routines in place, we will write two properties to save and retrieve our NightModeSettings
and FontSizeSettings as shown below.

// isolated storage key names of our settings
const string NightModeSettingKeyName = "NightModeSetting";
const string FontSizeSettingKeyName = "FontSizeSetting";

// default values for our settings
const bool NightModeSettingDefault = false;
const string FontSizeSettingDefault = "medium";

// Property to get and set a NightMode Setting.
public bool NightModeSetting
{
 get
 {
 return GetSettingValue<bool>(NightModeSettingKeyName, NightModeSettingDefault);
 }
 set
 {
 AddUpdateSetting(NightModeSettingKeyName, value);
 Save();
 }
}
// Property to get and set a RadioButton Setting Key.
public string FontSizeSetting
{
 get
 {
 return (GetSettingValue<string>(FontSizeSettingKeyName, FontSizeSettingDefault));
 }
 set
 {
 AddUpdateSetting(FontSizeSettingKeyName, value);
 Save();
 }
}

With this, we have the plumbing for retrieving and persisting preferences.

Saving the Settings

Open Settings.xaml.cs file using Solution Explorer and edit the Settings class constructor to create
appSettings instance.

AppSettings appSettings;
public Settings()
{
 InitializeComponent();
 // create AppSettings instance
 appSettings = new AppSettings();
}

When the user navigates away from this page, by clicking back button, OnNavigatedFrom event is fired.
In this event handler, we will save the user selections to our application settings.

 82

protected override void OnNavigatedFrom(System.Windows.Navigation.NavigationEventArgs e)
{
 //save settings based on selections in the UI
 appSettings.NightModeSetting = ((bool)NightModeCheckbox.IsChecked);
 if ((bool) FontSizeSmallBtn.IsChecked) appSettings.FontSizeSetting = "small";
 if ((bool)FontSizeMedBtn.IsChecked) appSettings.FontSizeSetting = "medium";
 if ((bool)FontSizeLargeBtn.IsChecked) appSettings.FontSizeSetting = "large";
 base.OnNavigatedFrom(e);
}

Similarly when the user navigates to this page, by clicking settings icon, OnNavigatedTo event is fired. In
this event handler, we will initialize the UI controls based on the application settings.

protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
{
 //initialize controls in the UI based on oersisted settings
 NightModeCheckbox.IsChecked = appSettings.NightModeSetting;
 if (appSettings.FontSizeSetting == "small")
 FontSizeSmallBtn.IsChecked = true;
 if (appSettings.FontSizeSetting == "medium")
 FontSizeMedBtn.IsChecked = true;
 if (appSettings.FontSizeSetting == "large")
 FontSizeLargeBtn.IsChecked = true;
}

Using Application Preferences

Whenever the application main page is loaded, we will use the settings to update the font size and
colors of the application.

Open MainPage.xaml and associate a new event handler for page load to the main
PhoneApplicationPage. Type space in the Phone:PhoneApplicationPage node and select Loaded. Select
<New Event Handler> which will added the following XAML at the end of Phone:PhoneApplicationPage
node and also create a placeholder method in the MainPage class.

Loaded="PhoneApplicationPage_Loaded"

Just like before, declare AppSettings instance in the MainPage class and instantiate it in the class
constructor as shown below.

AppSettings appSettings;
// Constructor
public MainPage()
{
 InitializeComponent();
 appSettings = new AppSettings();
}

 83

Write the following utility methods and properties in the class. The first method returns a
SolidColorBrush from hex values. The other two properties create and return dark and light brushes that
will be used to paint the background and foreground.

public static SolidColorBrush GetColorFromHexa(string hexaColor)
{
 return new SolidColorBrush(
 Color.FromArgb(
 Convert.ToByte(hexaColor.Substring(1, 2), 16),
 Convert.ToByte(hexaColor.Substring(3, 2), 16),
 Convert.ToByte(hexaColor.Substring(5, 2), 16),
 Convert.ToByte(hexaColor.Substring(7, 2), 16)
)
);
}
SolidColorBrush DarkBrush {
 get
 {
 return GetColorFromHexa("#CCDD1167");
 }
}
SolidColorBrush LightBrush
{
 get
 {
 return GetColorFromHexa("#FF00FFFF");
 }
}

The following routine returns the size of font based on the FontSize application setting.

double AppFontSize
{
 get
 {
 switch (appSettings.FontSizeSetting)
 {
 case "small":
 return 20;
 case "medium":
 return 24;
 case "large":
 return 28;
 default:
 return 24;
 }
 }
}

Finally, we will update the font size and the application colors based on the settings. This event handler
gets called when the page is loaded which happens when the application is loaded the first time or when
we navigate from the settings page.

private void PhoneApplicationPage_Loaded(object sender, RoutedEventArgs e)
{

 84

 //Update the fontsize of the poetry textblock.
 PoetryBlock.FontSize = AppFontSize;

 SolidColorBrush bgBrush;
 SolidColorBrush fgBrush;
 if (appSettings.NightModeSetting)
 {
 // use dark brush for the background and light brush for foreground for night mode
 bgBrush = DarkBrush;
 fgBrush = LightBrush;
 }
 else
 {
 // use light brush for the background and dark brush for foreground for day mode
 bgBrush = LightBrush;
 fgBrush = DarkBrush;
 }
 //now paint the entire app layout with background
 LayoutRoot.Background = bgBrush;
 //paint app title, page title and the poetry texblock text with foreground color
 this.Foreground = fgBrush;
 ApplicationTitle.Foreground = fgBrush;
 PageTitle.Foreground = fgBrush;
}

Now hit F5 to see the application react to application settings. Here is the behavior with small fonts and
day mode.

 85

On the other hand, if you select the night mode and large fonts, it should look like this.

Conclusions

In contrast to iPhone, Windows Phone 7 requires that the application settings be managed within the
application itself. This provides a consistent experience across all third party applications. It also
provides an ease of use as the user can change preferences without leaving the application.

While the two platforms differ in their presentation, both platforms use similar mechanism for
managing the preferences. They use dictionaries to save preferences as key-value pairs. While iPhone
uses application specific file store for persistence, Windows Phone 7 uses IsolatedStorage class to persist
preferences in protected storage.

Windows Phone 7 platform provides necessary widgets that closely correspond to widgets used for
iPhone application preferences. It is possible to migrate the application preferences from iPhone to
Windows Phone 7.

 86

Chapter 8: Introduction to Windows Phone 7
Notifications for iPhone Developers

What Are Push Notifications?

Push notifications are used to inform the user of the occurrence of external events or updates to user’s
application data.. Consider the following scenario. You are interested in knowing when the price of a
particular stock reaches a threshold. Both iPhone and Windows Phone 7 allow only one application to be
active in the foreground at any time. You want to know about it even if the application which shows
stock prices is not currently running in the foreground. Push notifications allow you to react to events
that are of interest to any application, not just the one in the foreground. .

On Windows Phone 7, notifications play a very important and prominent role. The application
notifications make the Windows Phone 7 tiles come alive. The notification mechanisms are used to
display the most up-to-date status of the application that reflects the events of interest to the user. The
tiles work with the notifications to bring information to the user. The user does not have to open the
application to the see the updated status.

Notifications on Windows Phone 7

There are three types of notifications on Windows Phone 7, namely, tile notifications, toast notifications
and raw notifications. They serve three distinct purposes.

Tile notification. Tile notification is used to show the up-to-date status of the application on the
application tile on the start screen of the phone. This is used only if the application is pinned to the start
page and is meant to provide information at a glance. There are three types of information included in a
tile notification, namely, a picture – for the tile background, a count – for example, think about the
count of email messages and a title that conveys a message.

Toast notification

. A toast notification is a message that pops up on the screen for 10 seconds. It is meant to provide time
sensitive information. It is system wide, but does not disrupt user operation or require user action. If the
user taps the notification, the application that sent the notification is launched. The user may dismiss
the toast with a flick.

 87

The toast notification shows a small the application icon on the left with two text items, a title and a
subtitle.

Raw notification

Unlike toast notifications, raw notifications are in-application notifications that require action. They can
be generated by the application itself or sent from a web service. Web service raw notifications only
appear within the specified application; there is no system-wide way to display a raw notification. They
affect only that application, if the application is not currently running, the raw notification is discarded.

iPhone and Windows Notifications Compared

iPhone provides three types of notifications, namely, sound, badge, and message notifications. Badge
notifications are used to display a number on the application tile. Message notification is used to display
a popup message that user needs to acknowledge. Here is how the notification mechanisms compare
on the two platforms.

Purpose iPhone Windows Phone 7

Information at a glance iPhone notification using badge
and sound

Live Tile notifications that show
a count, a title and a picture

Time sensitive information that
the user may ignore

N/A Toast notification with a
message

Time sensitive information that
the user must acknowledge

iPhone notification using
message and sound

Raw notifications when
application is running

As compared to the iPhone badge which is used to show an updated count (an application relevant
piece of information), WP7 has the additional ability to portray richer information in its tile notifications.
With the title message and the updated picture, WP7 notifications make the WP7 tiles come alive.

The Architecture of Windows Phone 7 Push Notifications

At a high level push notifications have a similar architecture on iPhone and Windows Phone 7. There are
three parts to the push notification system on both platforms.

1. The phone based application. A user subscribes to events or notifications of interest, either

explicitly or implicitly.

2. The web service that sends the notification. The web service monitors external events of

interest and checks the application status. It sends a notification to the notification service that

relays it to the device.

 88

3. The Apple or Microsoft Push Notification service that pushes the notification to the phone.

The following picture shows the architecture of the Windows Phone 7 Push notifications service.

Microsoft Push

Notification Service

Push Enabled Application

WP7 OS

1. Establish a push endpoint.

URI created for the end point and

returned to the app

Application Notification

 Web Application

2. Send URI to the web app along with

Subscription request

3. Notification message via HTTP Post

4. Tile, toast or raw notification to

app

The phone application with the WP7 OS, the application web service, and the Microsoft Push
Notification Service work together to bring the notification to the user.

1. The application uses WP7 to register its notification endpoint with the Microsoft Push Notification

Service (MPNS). A new URI is established for the endpoint and returned to the OS which forwards it

to the application. Compare this to iPhone where the application creates a unique device ID by

registering with the APNS.

2. The application sends the URI and a unique device ID to its notification application web service. This

is typically accompanied by the notification subscription request. For example, if the application

wants to be notified of changes to a flight schedule, it will send information such as the flight

number, along with the notification URI and a unique device ID to the remote application web

service. This is similar to what happens on iPhone where the application sends the device token

along with the notification subscription.

3. When an event that the user has subscribed to takes place, the web application sends the

notification to the MPNS which in turn sends the notification to the device. In response, depending

 89

upon the type of the notification, an action takes place. For iPhone, the notification request is sent

to APNS which in turn sends it to the device.

The following table shows the correspondence between parts of the iPhone and Windows Phone 7
notification mechanisms.

Purpose iPhone Windows Phone 7

Application registration Device token Unique Device ID + URI

Subscription notification Remote application web service Remote application web service

Notification service Apple Push Notification Service Microsoft Push Notification Service

Benefits of using WP7 Push Notifications

There are number of benefits of using WP7 push notifications WP7 uses heartbeat to reduce the
number of connections. Additionally, it batches the notifications, which helps reduce the radio usage to
conserve the battery.

Using WP7 Notifications within the Application

Let us look at what it takes to implement push notifications in a WP7 application.

Registering for the notifications

On Windows Phone 7, registering for the notification requires two pieces of information, namely, a
unique ID and a URI. This tuple is the counterpart of the device token on iPhone. The URI is used by the
MPNS to address the device uniquely. The application push web service sends the notification message
that includes the URI to the MPNS, which then forwards it to the device.

Compare this with the registration for notification on iPhone. To receive the notification, you need to
download a provisioning profile configured for notification. Once provisioned, the application uses
registerForNotificationType using one or more notification types.

Generating a unique ID

The device generates its own unique ID using a GUID and saves it in the isolated storage for subsequent
runs of the application. The application should subsequently send the same device ID since the
notification service uses it to index the subscription information as well as the notification endpoint.

//if you have previously created a unique id, use it, otherwise create a new one
if (IsolatedStorageSettings.ApplicationSettings.Contains("DeviceId"))
{
 //retrieve the unique id saved in the isolated storage
 _deviceId = (Guid)IsolatedStorageSettings.ApplicationSettings["DeviceId"];
}
else
{
 //create a new guid and save it in the isolated storage

 90

 _deviceId = Guid.NewGuid();
 IsolatedStorageSettings.ApplicationSettings["DeviceId"] = _deviceId;
}
// Sset up a notification channel and subscribe to notifications
SetupNotificationChannel();

Obtaining the notification URI

The device registers with MPNS to obtain a URI that MPNS will subsequently use to address the device
uniquely. The URI is contained in the HttpNotificationChannel (simply called Channel) object. If
the Channel with a specific name does not exist, the application creates a new Channel. If the service
updates the notification URI, application receives the updated URI via the ChannelUriUpdated event
handler.

string ChannelName = "MyUniqueChannelName";

private void SetupNotificationChannel()
{
 //Find the channel with the given name
 _channel = HttpNotificationChannel.Find(ChannelName);
 if (_channel == null)
 {
 //Channel does not exist. Create one
 _channel = new HttpNotificationChannel(ChannelName);
 //hookup the event handler to receive updated channel object with the new notification URI
 _channel.ChannelUriUpdated += ChannelUriUpdated;
 _channel.ErrorOccurred += (s, e) => Deployment.Current.Dispatcher.BeginInvoke(() => ErrorOccurred(e));
 //Channel URI will be sent in the event handler after Open is called
 _channel.Open();
 }
 else
 {
 //found an existing channel, now hook up notificaton handlers
 HookupNotificationHandlers();
 //communicate with the app web service for subscribing to notifications
 SubscribeToNotifications();
 }
}

Handling Notifications

Whenever the notification URI is updated, the ChannelUriUpdated event handler is called. Once the
application receives the updated URI, it binds the channel to the toast and tile notifications if they are
not bound already. These binding are used when the application is not running. WP7 will handle these
notifications in the standard manner as described above. The iPhone too provides a standard manner in
which notifications are handled when the application is not running. This behavior is configured
automatically on the iPhone.

private void ChannelUriUpdated(object sender, NotificationChannelUriEventArgs e)
{
 //retrieve the Channel again as the URI is updated
 _channel = HttpNotificationChannel.Find(ChannelName);
 //bind the channel with Toast and Tile
 if (!_channel.IsShellToastBound)
 {
 _channel.BindToShellToast();
 }
 if (!_channel.IsShellTileBound)

 91

 {
 _channel.BindToShellTile();
 }
 //Setup the notification event handlers
 HookupNotificationHandlers();
 //Send the device id and the URI to the app notification web service.
 //web service should update the URI if it is already stored in the web service
 SubscribeToNotifications();
}

The following method shows how the toast and raw notifications are handled when the application is
running. When these notifications are received, the ToastReceived and HttpNotificationReceived
methods are invoked. ToastReceived is used for toast notifications whereas HttpNotificationReceived is
used for raw notifications. A tile notification has a standard behavior and a running application is not
notified. Compare that with iPhone where the application receives didReceiveRemoteNotification call back
if the application is running when the notification arrives. The application can then handle the
notifications the way it wants.

Since these notifications are not received on the UI thread, we use BeginInvoke to handle them on the
UI thread. In this example, these notifications are displayed on the page but you may choose to use
them in other ways.

private void HookupNotificationHandlers()
{

 _channel.ShellToastNotificationReceived += (s, e) => Deployment.Current.Dispatcher.BeginInvoke(() =>
ToastReceived(e));
 _channel.HttpNotificationReceived += (s, e) => Deployment.Current.Dispatcher.BeginInvoke(() =>
HttpNotificationReceived(e));
 _channel.ErrorOccurred += (s, e) => Deployment.Current.Dispatcher.BeginInvoke(() => ErrorOccurred(e));
}

private void HttpNotificationReceived(HttpNotificationEventArgs e)
{
 var reader = new StreamReader(e.Notification.Body);
 var message = reader.ReadToEnd();
 notifications.Items.Add("Raw notification message : " + message);
 reader.Close();
}

private void ToastReceived(NotificationEventArgs e)
{
 notifications.Items.Add("Toast notification message : " + e.Collection["wp:Text1"]);
}

Subscribing to Notifications

Once the application has the updated URI, it can use it to subscribe to notifications with its remote
application web service. In our sample application, we will print the channel URI to the console and use
it from our message sender application. You should send both the device ID and the URI along with
additional parameters needed to subscribe to application specific notifications.

private void SubscribeToNotifications()
{
 Debug.WriteLine("Use this channel URI to send notification:" + _channel.ChannelUri.ToString());

 92

}

Sending notifications

In our sample example, we demonstrate how to send the notification using a simple WPF application. It
takes the URI and other parameters needed for each type of notification and performs HTTP post to
MPNS.

As opposed to the JSON format used in iPhone, WP7 notification uses XML format for the tile and toast
messages. In this example, the first three methods format the message appropriately and call the
SendMessage method. The structure of the three methods is very similar. Messages are sent to the
device using HTTP POST to the application URI received in the subscription request. In this example, we
ignore the status of the notification POST but ideally, you should handle the response appropriately.

public void SendToastNotification(string message)
{
 string toastMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>{0}</wp:Text1>" +
 "</wp:Toast>" +
 "</wp:Notification>";
 string formattedToastMessage = string.Format(toastMessage, message);
 byte[] messageBytes = System.Text.Encoding.UTF8.GetBytes(formattedToastMessage);
 SendMessage(uri, messageBytes, NotificationType.Toast);
}
public void SendRawNotification(string message)
{
 byte[] messageBytes = Encoding.UTF8.GetBytes(message);
 SendMessage(uri, messageBytes, NotificationType.Raw);
}
public void SendTileUpdate(string title, int count, string imageUrl)
{
 string tileMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Tile>" +
 "<wp:BackgroundImage>{0}</wp:BackgroundImage>" +
 "<wp:Count>{1}</wp:Count>" +
 "<wp:Title>{2}</wp:Title>" +
 "</wp:Tile> " +
 "</wp:Notification>";
 string formattedTileMessage = string.Format(tileMessage, imageUrl, count, title);
 byte[] messageBytes = System.Text.Encoding.UTF8.GetBytes(formattedTileMessage);
 SendMessage(uri, messageBytes, NotificationType.Tile);
}

private void SendMessage(Uri uri, byte[] messageBytes, NotificationType notificationType)
{
 var request = (HttpWebRequest)WebRequest.Create(uri);
 request.Method = WebRequestMethods.Http.Post;
 request.ContentType = "text/xml";
 request.ContentLength = messageBytes.Length;
 request.Headers.Add("X-MessageID", Guid.NewGuid().ToString());
 switch (notificationType)
 {
 case NotificationType.Toast:
 request.Headers["X-WindowsPhone-Target"] = "toast";
 request.Headers.Add("X-NotificationClass", ((int)BatchingInterval.ToastImmediately).ToString());
 break;
 case NotificationType.Tile:
 request.Headers["X-WindowsPhone-Target"] = "token";
 request.Headers.Add("X-NotificationClass", ((int)BatchingInterval.TileImmediately).ToString());
 break;
 case NotificationType.Raw:
 request.Headers.Add("X-NotificationClass", ((int)BatchingInterval.RawImmediately).ToString());
 break;

 93

 }
 using (var requestStream = request.GetRequestStream())
 {
 requestStream.Write(messageBytes, 0, messageBytes.Length);
 }

}

Sending notifications from the application web service

In a real WP7 application, you will send both the device ID and the Channel URI to the application web
service. The web service should store the Channel URIs indexed by the device ID. While the channel URI
may change, the device ID remains the same. The web service should update the channel URI every time
it receives the device ID and channel URI from the device.

Throttling

MPNS allows both unauthenticated and authenticated notifications. However, unauthenticated push
requests are throttled if they exceed 500 messages per day. There are no such restrictions on
authenticated requests which uses client SSL for authentication.

Comparing iPhone and WP7 Notifications

While the two services are similar, there are subtle differences between iPhone and WP7 notification
mechanisms. Developers can take advantage of the MPNS mechanism to improve the user experience.

On Windows Phone 7, tile notification can use remote image files which can be used to show fresh
status on WP7 tiles. Similarly on WP7, there is no limit on the size of the notification messages and
developers can use them creatively. There is no guarantee of delivery of messages on either service.
Notifications may not be delivered MPNS provides a status of the delivery which developers can use to
resend the notification.

Functionality iPhone Windows Phone7

Notification Service Apple Push Notification Service Microsoft Notification Service

Payload format JSON XML

Payload resource Local sound files Local or remote image files. Size of remote
file can be upto 80kb

Payload length 256 bytes No limit on the size of payload

Delivery guarantee No guarantee No guarantee

Delivery class Delivered ASAP Delivered immediately or within 450 or
900 seconds

Delivery status No status of delivery Able to get the status of delivery.

Connection Trust TLS between application web
service and APNS

No SSL for < 500 notifications or SSL
otherwise for connection between app
web service and MPNS

 94

Summary

The push notification mechanism plays a very critical role in Windows Phone 7. It makes tiles come alive
and provides up-to-date information at a glance. Windows Phone 7 provides a compelling notification
mechanism that is easy to use. Developers can start using notifications immediately even without
setting up client authentication. While the architecture of the services on iPhone and WP7 is similar,
developers can take advantage of the additional features WP7 notification mechanism provides.

Resources

1. Push Notifications for Windows Phone: MSDN reference on Windows Phone push notification.

2. Windows Phone 7 in 7: Push Notifications

http://msdn.microsoft.com/en-us/library/ff402537(v=VS.92).aspx
http://msdn.microsoft.com/en-us/downloads/gg153660.aspx

 95

Next Chapters [list TBD]

Coming soon

 96

This document is provided “as-is.” Information and views expressed in this document, including URL and
other Internet Web site references, may change without notice. This document does not provide you
with any legal rights to any intellectual property in any Microsoft product. You may copy and use this
document for your internal, reference purposes. You may modify this document for your internal,
reference purposes.

Distributed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

